Skip to main content

Deep Neural Network with Limited Numerical Precision

  • Conference paper
  • First Online:
International Conference on Applications and Techniques in Cyber Security and Intelligence (ATCI 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 580))

  • 1135 Accesses

Abstract

In convolution neural networks, digital multiplication operation is the arithmetic operation of the most space-consuming and power consumption. This paper trains convolutional neural network with three different data formats (float point, fixed point and dynamic fixed point) on two different datasets (MNIST, CIFAR-10). For each data set and each data format, the paper assesses the impact of the multiplication accuracy to the error rate at the end of the training. The results show that the network error rate which is trained with low accuracy fixed point has small difference with the network training error rate which is trained with floating point, and this phenomenon shows that the use of low precision can fully meet the training requirements in the process of training the network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williamson, D.: Dynamic scaling; iteration stages; digital filters; overflow probability; fixed point arithmetic; fixed-point filter. In: Dynamically Scaled Fixed Point Arithmetic, pp. 315–318. New York, NY, USA (1991)

    Google Scholar 

  2. Simard, P., Graf, H.P.: Backpropagation without multiplication. In: Advances in Neural Information Processing Systems, pp. 232–239 (1994)

    Google Scholar 

  3. Pham, P.-H., Jelaca, D., Farabet, C., Martini, B., LeCun, Y., Culurciello, E.: NeuFlow: dataflow vision processing system-on-a-chip. In: 2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1044–1047. IEEE (2012)

    Google Scholar 

  4. Vanhoucke, V., Senior, A., Mao, M.Z.: Improving the speed of neural networks on cpus. In: Proceedings of Deep Learning and Unsupervised Feature Learning NIPS Workshop (2011)

    Google Scholar 

  5. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Le, Q., Mao, M., Ranzato, M., Senior, A. Tucker, P., Yang, K., Ng, A.Y.: Large scale distributed deep networks. In: NIPS 2012 (2012)

    Google Scholar 

  6. David, J., Kalach, K., Tittley, N.: Hardware complexity of modular multiplication andexponentiation. IEEE Trans. Comput. 56(10), 1308–1319 (2007)

    Article  MathSciNet  Google Scholar 

  7. Coates, A., Baumstarck, P., Le, Q., Ng, A. Y.: Scalable learning for object detection with gpu hardware. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. IROS 2009, pp. 4287–4293. IEEE (2009)

    Google Scholar 

  8. Kim, S.K., McAfee, L.C., McMahon, P.L., Olukotun, K.: A highly scalable restricted Boltzmann machine FPGA implementation. In: International Conference on Field Programmable Logic and Applications, 2009. FPL 2009, pp. 367–372. IEEE (2009)

    Google Scholar 

  9. Gupta, S., Agrawal, A., Gopalakrishnan, K.: Deep Learing with Limited Numberical Precision (2015)

    Google Scholar 

  10. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks. Technical Report Arxiv Report 1302.4389, Universite de Montréal (2013)

    Google Scholar 

  11. Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architecture for object recognition? In: Proceedings of International Conference on Computer Vision (ICCV 2009), pp. 2146–2153. IEEE (2009)

    Google Scholar 

  12. Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., Temam, O. Diannao: a small footprint high-throughput accelerator for ubiquitous machine-learning. In: Proceedings of the 19th international conference on Architectural support for programming languages and operating systems, pp. 269–284. ACM (2014)

    Google Scholar 

  13. Holt, J.L., Baker, T.E.: Back propagation simulations using limited precision calculations. In: IJCNN-91-Seattle International Joint Conference on Neural Networks, 1991, vol. 2, pp. 121–126. IEEE (1991)

    Google Scholar 

  14. Savich, A.W., Moussa, M., Areibi, S.: The impact of arithmetic representation on implementing mlp-bp on fpgas: a study. Neural Netw. IEEE Trans. 18(1), 240–252 (2007)

    Article  Google Scholar 

  15. Presley, R.K., Haggard, R.L.: A fixed point implementation of the backpropagation learning algorithm. In: Southeastcon 1994. Creative Technology Transfer-A Global Affair. Proceedings of the 1994 IEEE, pp. 136–138. IEEE (1994)

    Google Scholar 

  16. Nair, V., Hinton, G.: Rectified linear units improve restricted Boltzmann machines. In: ICML 2010 (2010)

    Google Scholar 

  17. Farabet, C., Martini, B., Corda, B., Akselrod, P., Culurciello, E., LeCun, Y. NeuFlow: Aruntime reconfigurable dataflow processor for vision. In: 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 109–116. IEEE (2011)

    Google Scholar 

  18. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical Report, University of Toronto (2009)

    Google Scholar 

  19. Wawrzynek, J., Asanovic, K., Kingsbury, B., Johnson, D., Beck, J., Morgan, N.: Spert-ii: a vector microprocessor system. Computer 29(3), 79–86 (1996)

    Article  Google Scholar 

  20. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: AISTATS 2011 (2011)

    Google Scholar 

Download references

Acknowledgements

The authors of this paper are members of Shanghai Engineering Research Center of Intelligent Video Surveillance. In part by Technology Research Program of Ministry of Public Security of China under Grant 2015JSYJB26.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuXin Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Cai, Y., Liang, C., Tang, Z., Li, H., Gong, S. (2018). Deep Neural Network with Limited Numerical Precision. In: Abawajy, J., Choo, KK., Islam, R. (eds) International Conference on Applications and Techniques in Cyber Security and Intelligence. ATCI 2017. Advances in Intelligent Systems and Computing, vol 580. Edizioni della Normale, Cham. https://doi.org/10.1007/978-3-319-67071-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67071-3_8

  • Published:

  • Publisher Name: Edizioni della Normale, Cham

  • Print ISBN: 978-3-319-67070-6

  • Online ISBN: 978-3-319-67071-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics