Skip to main content

Wasserstein Geometry of Quantum States and Optimal Transport of Matrix-Valued Measures

  • Chapter
  • First Online:
Emerging Applications of Control and Systems Theory

Abstract

We overview recent results on generalizations of the Wasserstein 2-metric, originally defined on the space of scalar probability densities, to the space of Hermitian matrices and of matrix-valued distributions, as well as some extensions of the theory to vector-valued distributions and discrete spaces (weighted graphs).

This project was supported by ARO grant (W911NF-17-1-0429), AFOSR grants (FA9550-15-1-0045 and FA9550-17-1-0435), NSF (ECCS-1509387), NIH (P41-RR-013218, P41-EB-015902, 1U24CA18092401A1), and a postdoctoral fellowship at MSKCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The domain of \(\nabla _L\) is \({\mathscr {H}}\), hence the identity requires \(XY+YX\), instead of simply XY.

  2. 2.

    The Lindblad term is in the so-called symmetric form since the coefficients are Hermitian.

References

  1. Ambrosio, L.: Euro Summer School Mathematical Aspects of Evolving Interfaces. Lecture Notes on Optimal Transport Theory. CIME Series of Springer Lecture Notes. Madeira, Portugal, Springer-Verlag, New York (2000)

    Google Scholar 

  2. Angenent, S., Haker, S., Tannenbaum, A.: Minimizing flows for the Monge-Kantorovich problem. SIAM J. Math. Anal. 35, 61–97 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numerische Mathematik 84, 375–393 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benamou, J.-D.: Numerical resolution of an unbalanced mass transport problem. ESAIM. Math. Model. Numer. Anal. 37(5), 851–868 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carlier, G., Salomon, J.: A monotonic algorithm for the optimal control of the Fokker-Planck equation. In: IEEE Conference on Decision and Control (2008)

    Google Scholar 

  6. Carlen, E., Maas, J.: Gradient flow and entropy inequalities for quantum Markov semigroups with detailed balance (2016). https://arxiv.org/abs/1609.01254

  7. Carlen, E., Maas, J.: An analog of the 2-Wasserstein metric in non-commutative probability under which the fermionic Fokker-Planck equation is gradient flow for the entropy. Commun. Math. Phys. 331, 887–926 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Y., Georgiou, T.T., Tannenbaum, A.: Matrix optimal mass transport: a quantum mechanical approach (2016). https://arxiv.org/abs/1610.03041

  9. Chen, Y., Gangbo, W., Georgiou, T.T., Tannenbaum, A.: On the matrix Monge-Kantorovich problem. https://arxiv.org/abs/1701.02826

  10. Chen, Y., Georgiou, T.T., Tannenbaum, A.: Transport distance on graphs and vector-valued optimal mass transport (2016). https://arxiv.org/pdf/1611.09946v1.pdf

  11. Chen, Y., Georgiou, T.T., Tannenbaum, A.: Interpolation of density matrices and matrix-valued measures: the unbalanced case (2017). https://arxiv.org/abs/1612.05914

  12. Chen, Y., Georgiou, T.T., Pavon, M.: On the relation between optimal transport and Schrödinger bridges: a stochastic control viewpoint. J. Optim. Theory Appl. 169(2), 671–691 (2016)

    Google Scholar 

  13. Chen, Y., Georgiou, T.T., Pavon, M., Tannenbaum, A.: Robust transport over networks. IEEE Trans. Autom. Control (2016). https://doi.org/10.1109/TAC.2016.2626796

  14. Chen, Y., Georgiou, T.T., Pavon, M.: Entropic and displacement interpolation: a computational approach using the Hilbert metric. SIAM J. Appl. Math. 76(6), 2375–2396 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Evans, L.C.: Partial Differential Equations and Monge-Kantorovich Mass Transfer, in Current Developments in Mathematics, pp. 65–126. International Press, Boston, MA (1999)

    Google Scholar 

  16. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gustafson, S., Sigal, I.M.: Mathematical Concepts of Quantum Mechanics. Springer, New York (2011)

    Book  MATH  Google Scholar 

  18. Kantorovich, L.V.: On a problem of Monge. Uspekhi Mat. Nauk. 3, 225–226 (1948)

    Google Scholar 

  19. Kumar, A., Tannenbaum, A., Balas, G.: Optical flow: a curve evolution approach. IEEE Trans. Image Process. 5, 598–611 (1996)

    Article  Google Scholar 

  20. Mittnenzweig, M., Mielke, A.: An entropic gradient structure for Lindblad equations and GENERIC for quantum systems coupled to macroscopic models (2016). https://arxiv.org/abs/1609.05765

  21. Léonard, C.: From the Schrödinger problem to the Monge-Kantorovich problem. J. Funct. Anal. 262, 1879–1920 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Maas, J.: Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261(8), 2250–2292 (2011)

    Google Scholar 

  23. McCann, R.: Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80, 309–323 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ning, L., Georgiou, T., Tannenbaum, A.: On matrix-valued Monge-Kantorovich optimal mass transport. IEEE Trans. Autom. Control 60(2), 373–382 (2015)

    Google Scholar 

  25. Rachev, S., Rüschendorf, L.: Mass Transportation Problems, vol. I. Springer-Verlag, New York (1998) (Probab. Appl.)

    Google Scholar 

  26. Sandhu, R., Georgiou, T., Reznik, E., Zhu, L., Kolesov, I., Senbabaoglu, Y., Tannenbaum, A.: Graph curvature for differentiating cancer networks. Sci. Rep. (Nat.), 5, 12323 (2015). https://doi.org/10.1038/srep12323

  27. Sandhu, R., Georgiou, T., Tannenbaum, A.: Ricci curvature: an economic indicator for market fragility and systemic risk. Sci. Adv. 2 (2016). https://doi.org/10.1126/sciadv.1501495

  28. Tannenbaum, E., Georgiou, T., Tannenbaum, A.: Optimal mass transport for problems in control, statistical estimation, and image processing. In: Dym, H., de Oliveira, M.C., Putinar, M. (eds.) Mathematical Methods in Systems, Optimization, and Control. Birkhauser, Basel (2012)

    Google Scholar 

  29. Tannenbaum, E., Georgiou, T., Tannenbaum, A.: Signals and control aspects of optimal mass transport and the Boltzmann entropy. In: 49th IEEE Conference on Decision and Control, pp. 1885–1890 (2010)

    Google Scholar 

  30. Villani, C.: Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58. AMS, Providence, RI (2003)

    MATH  Google Scholar 

  31. Villani, C.: Trend to equilibirum for dissipative equations, functional inequalities and mass transportation. In: de Carvalho, M., Rodrigues, J-F. (eds.) Contemporary Mathematics: Recent Advances in the Theory and Applications of Mass Transport. American Mathematical Society Publications (2004)

    Google Scholar 

  32. Villani, C.: Optimal Transport, Old and New. Springer, New York (2008)

    MATH  Google Scholar 

  33. Wang, C., Jonckheere, E., Banirazi, R.: Wireless network capacity versus Ollivier-Ricci curvature under Heat Diffusion (HD) protocol. In: Proceedings of ACC (2013)

    Google Scholar 

  34. Yamamoto, K., Chen, Y., Ning, L., Georgiou, T., Tannenbaum, A.: Regularization and interpolation of positive matrices (2016). https://arxiv.org/abs/1611.07945

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tryphon T. Georgiou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Y., Georgiou, T.T., Tannenbaum, A. (2018). Wasserstein Geometry of Quantum States and Optimal Transport of Matrix-Valued Measures. In: Tempo, R., Yurkovich, S., Misra, P. (eds) Emerging Applications of Control and Systems Theory. Lecture Notes in Control and Information Sciences - Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-319-67068-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67068-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67067-6

  • Online ISBN: 978-3-319-67068-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics