Natural Products from Plants as Potential Leads as Novel Antileishmanials: A Preclinical Review

  • João Henrique G. Lago
  • Kaidu H. Barrosa
  • Samanta Etel T. Borborema
  • André G. Tempone
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 19)


Different plant species have been used in the folk medicine to the treatment of several pathologies. In some poor regions of the world, the use of these extracts is the unique therapeutic source for the treatment of antiparasitic diseases, including leishmaniasis. The effects of these extracts are directly associated to the production and accumulation of specific active natural products/secondary metabolites—terpenoids, phenolic derivatives, alkaloids, lignoids. Several studies have been conducted for evaluation of in vitro antileishmanial activity of these compounds but there are only few reports that describe the preclinical evaluation. In this aspect, this chapter attempts to give an overview on the potential of such plant-derived natural products as antileishmanial leads, mainly those that displayed in vivo potential.


Leishmaniasis Natural products Plants In vivo assays Therapy Leishmania 


  1. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE 7:e35671CrossRefPubMedCentralPubMedGoogle Scholar
  2. Andrade HM, Toledo VPCP, Pinheiro MB, Guimarães TMPD, Oliveira NC, Castro JA, Silva RN, Amorim AC, Brandão RMSS, Yoko M, Silva AS, Dumont K, Ribeiro ML, Bartchewsky W, Monte SJH (2011) Evaluation of miltefosine for the treatment of dogs naturally infected with L. infantum (=L. chagasi) in Brazil. Vet Parasitol 181:83–90CrossRefPubMedGoogle Scholar
  3. Arruda DC, Miguel DC, Yokoyama-Yasunaka JKU, Katzin AM, Uliana SRB (2009) Inhibitory activity of limonene against Leishmania parasites in vitro and in vivo. Biomed Pharmacother 63:643–649CrossRefPubMedGoogle Scholar
  4. Balasegaram M, Ritmeijer K, Lima MA, Burza S, Ortiz Genovese G, Milani B, Gaspani S, Potet J, Chappuis F (2012) Liposomal amphotericin B as a treatment for human leishmaniasis. Expert Opin Emerg Drugs 17:493–510CrossRefPubMedCentralPubMedGoogle Scholar
  5. Bumb RA, Mehta RD, Ghiya BC, Jakhar R, Prasad N, Soni P, Lezama-Davila C, Satoskar AR (2010) Efficacy of short-duration (twice weekly) intralesional sodium stibogluconate in treatment of cutaneous leishmaniasis in India. Br J Dermatol 163:854–858CrossRefPubMedGoogle Scholar
  6. Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, Peeling RW, Alvar J, Boelaert M (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5:873–882CrossRefPubMedGoogle Scholar
  7. Chen M, Christensen SB, Theander TG (1994) Antileishmanial activity of Licochalcone A in mice infected with Leishmania major and in hamsters infected with Leishmania donovani. Antimicrob Agents Chemother 38:1339–1344CrossRefPubMedCentralPubMedGoogle Scholar
  8. Corpas-López V, Morillas-Márquez F, Navarro-Moll MC, Merino-Espinosa G, Díaz-Sáez V, Martín-Sánchez J (2015) (−)-α-Bisabolol, a promising oral compound for the treatment of visceral leishmaniasis. J Nat Prod 78:1202–1207Google Scholar
  9. Croft SL, Coombs GH (2003) Leishmaniasis—Current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol 19:502–508CrossRefPubMedGoogle Scholar
  10. Dantas-Torres F (2009) Canine leishmaniosis in South America. Parasit Vectors 2:S1CrossRefPubMedCentralPubMedGoogle Scholar
  11. Dantas-Torres F, Solano-Gallego L, Baneth G, Ribeiro VM, de Paiva-Cavalcanti M, Otranto D (2012) Canine leishmaniosis in the old and new worlds: unveiled similarities and differences. Trends Parasitol 28:531–538CrossRefPubMedGoogle Scholar
  12. Den Boer M, Argaw D, Jannin J, Alvar J (2011) Leishmaniasis impact and treatment access. Clin Microbiol Infect 17:1471–1477CrossRefGoogle Scholar
  13. Desjeux P (2004) Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27:305–318CrossRefPubMedGoogle Scholar
  14. Desjeux P, Ghosh R, Dhalaria P, Strub-Wourgaft N, Zijlstra EE (2013) Report of the Post Kala-Azar Dermal Leishmaniasis (PKDL) consortium meeting, New Delhi, India, 27–29 June 2012. Parasit. Vectors 6:196CrossRefPubMedCentralPubMedGoogle Scholar
  15. Ferreira ME, de Arias AR, Yaluff G, de Bilbao NV, Nakayama H, Torres S, Schinini A, Guy I, Heinzen H, Fournet A (2010) Antileishmanial activity of furoquinolines and coumarins from Helietta apiculata. Phytomedicine 17:375–378CrossRefPubMedGoogle Scholar
  16. Ferreira ME, Rojas de Arias A, Torres de Ortiz S, Inchausti A, Nakayama H, Thouvenel C, Hocquemiller R, Fournet A (2002) Leishmanicidal activity of two canthin-6-one alkaloids, two major constituents of Zanthoxylum chiloperone var. angustifolium. J Ethnopharmacol 80:199–202CrossRefPubMedGoogle Scholar
  17. Flores N, Cabrera G, Jiménez IA, Piñero J, Giménez A, Bourdy G, Cortés-Selva F, Bazzocchi IL (2007) Leishmanicidal constituents from the leaves of Piper rusbyi. Planta Med 73:206–211CrossRefPubMedGoogle Scholar
  18. Fournet A, Barrios A (1992) Effect of natural naphthoquinones in BALB/c mice infected with Leishmania amazonensis and L. venezuelensis. Trop Med Parasitol 43:219–222PubMedGoogle Scholar
  19. Fournet A, Barrios AA, Muñoz V, Hocquemiller R, Roblot F, Cavé A (1994) Antileishmanial activity of a tetralone isolated from Ampelocera edentula, a Bolivian plant used as a treatment for cutaneous leishmaniasis. Planta Med 60:8–12CrossRefPubMedGoogle Scholar
  20. Germonprez N, Maes L, Van Puyvelde L, Van Tri M, Tuan DA, De Kimpe N (2005) In Vitro and in vivo anti-leishmanial activity of triterpenoid saponins isolated from Maesa balansae and some chemical derivatives. J Med Chem 48:32–37CrossRefPubMedGoogle Scholar
  21. Herwaldt BL (1999) Leishmaniasis. Lancet 354:1191–1199Google Scholar
  22. Inacio JDF, Canto-Cavalheiro MM, Almeida-Amaral EE (2013) In vitro and in vivo effects of (−)-epigallocatechin 3-O-gallate on Leishmania amazonensis. J Nat Prod 76:1993–1996CrossRefPubMedGoogle Scholar
  23. Khaliq T, Misra P, Gupta S, Reddy KP, Kant R, Maulik PR, Dube A, Narender T (2009) Peganine hydrochloride dihydrate an orally active antileishmanial agent. Bioorg Med Chem Lett 19:2585–2586CrossRefPubMedGoogle Scholar
  24. Kyriazis JD, Aligiannis N, Polychronopoulos P, Skaltsounis A-L, Dotsika E (2013) Leishmanicidal activity assessment of olive tree extracts. Phytomedicine 20:275–281CrossRefPubMedGoogle Scholar
  25. Manna L, Reale S, Picillo E, Vitale F, Gravino AE (2008) Interferon-gamma (INF-γ), IL4 expression levels and Leishmania DNA load as prognostic markers for monitoring response to treatment of leishmaniotic dogs with miltefosine and allopurinol. Cytokine 44:288–292CrossRefPubMedGoogle Scholar
  26. McGwire BS, Satoskar AR (2014) Leishmaniasis: clinical syndromes and treatment. QJM 107:7–14CrossRefPubMedGoogle Scholar
  27. Misra P, Sashidhara KV, Singh SP, Kumar A, Gupta R, Chaudhaery SS, Gupta S Sen, Majumder HK, Saxena AK, Dube A (2010) 16alpha-Hydroxycleroda-3,13(14)Z-dien-15,16-olide from Polyalthia longifolia: a safe and orally active antileishmanial agent. Br J Pharmacol 159:1143–1150CrossRefPubMedCentralPubMedGoogle Scholar
  28. Mittra B, Saha A, Chowdhury AR, Pal C, Mandal S, Mukhopadhyay S, Bandyopadhyay S, Majumder HK (2000) Luteolin, an abundant dietary component is a potent anti-leishmanial agent that acts by inducing topoisomerase II-mediated kinetoplast DNA cleavage leading to apoptosis. Mol Med 6:527–541CrossRefPubMedCentralPubMedGoogle Scholar
  29. Monge-Maillo B, López-Vélez R (2015) Miltefosine for visceral and cutaneous leishmaniasis: drug characteristics and evidence-based treatment recommendations. Clin Infect Dis 60:1398–1404PubMedGoogle Scholar
  30. Montrieux E, Perera WH, García M, Maes L, Cos P, Monzote L (2014) In vitro and in vivo activity of major constituents from Pluchea carolinensis against Leishmania amazonensis. Parasitol Res 113:2925–2932CrossRefPubMedGoogle Scholar
  31. Monzote L, Pastor J, Scull R, Gille L (2014) Antileishmanial activity of essential oil from Chenopodium ambrosioides and its main components against experimental cutaneous leishmaniasis in BALB/c mice. Phytomedicine 21:1048–1052CrossRefPubMedGoogle Scholar
  32. Murray HW, Berman JD, Davies CR, Saravia NG (2005) Advances in leishmaniasis. Lancet 366:1561–1577CrossRefPubMedGoogle Scholar
  33. Muzitano MF, Falcão CAB, Cruz EA, Bergonzi MC, Bilia AR, Vincieri FF, Rossi-Bergmann B, Costa SS (2009) Oral metabolism and efficacy of Kalanchoe pinnata flavonoids in a murine model of cutaneous leishmaniasis. Planta Med 75:307–311CrossRefPubMedGoogle Scholar
  34. Nagle AS, Khare S, Kumar AB, Supek F, Buchynskyy A, Mathison CJN, Chennamaneni NK, Pendem N, Buckner FS, Gelb MH, Molteni V (2014) Recent developments in drug discovery for leishmaniasis and human african Trypanosomiasis. Chem Rev 114:11305–11347CrossRefPubMedCentralPubMedGoogle Scholar
  35. Otranto D, Dantas-Torres F (2013) The prevention of canine leishmaniasis and its impact on public health. Trends Parasitol 29:339–345CrossRefPubMedGoogle Scholar
  36. Poddar A, Banerjee A, Ghanta S, Chattopadhyay S (2008) In vivo efficacy of calceolarioside A against experimental visceral leishmaniasis. Planta Med 74:503–508CrossRefPubMedGoogle Scholar
  37. Ready P (2014) Epidemiology of visceral leishmaniasis. Clin, Epidemiol, p 147Google Scholar
  38. Ready PD (2013) Biology of phlebotomine sand flies as vectors of disease agents. Annu Rev Entomol 58:227–250CrossRefPubMedGoogle Scholar
  39. Saha S, Mukherjee T, Chowdhury S, Mishra A, Chowdhury SR, Jaisankar P, Mukhopadhyay S, Majumder HK (2013) The lignan glycosides lyoniside and saracoside poison the unusual type IB topoisomerase of Leishmania donovani and kill the parasite both in vitro and in vivo. Biochem Pharmacol 86:1673–1687CrossRefPubMedGoogle Scholar
  40. Sen G, Mandal S, Saha Roy S, Mukhopadhyay S, Biswas T (2005) Therapeutic use of quercetin in the control of infection and anemia associated with visceral leishmaniasis. Free Radic Biol Med 38:1257–1264CrossRefPubMedGoogle Scholar
  41. Singh S (2014) Changing trends in the epidemiology, clinical presentation, and diagnosis of Leishmania–HIV co-infection in India. Int J Infect Dis 29:103–112CrossRefPubMedGoogle Scholar
  42. Tasdemir D, Kaiser M, Brun R, Yardley V, Schmidt TJ, Tosun F, Rüedi P (2006) Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: in vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies. Antimicrob Agents Chemother 50:1352–1364CrossRefPubMedCentralPubMedGoogle Scholar
  43. Tempone AG, Martins de Oliveira C, Berlinck RGS (2011) Current approaches to discover marine antileishmanial natural products. Planta Med 77:572–585CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • João Henrique G. Lago
    • 1
  • Kaidu H. Barrosa
    • 1
  • Samanta Etel T. Borborema
    • 2
  • André G. Tempone
    • 2
  1. 1.Center for Natural and Human SciencesFederal University of ABCSanto AndreBrazil
  2. 2.Centre of Parasitology, Adolfo Lutz InstituteSão PauloBrazil

Personalised recommendations