Optimization of Drop Characteristics in a Carrier Cooled Gas Stream Using ANSYS and Globalizer Software Systems on the PNRPU High-Performance Cluster

  • Stanislav L. KalyulinEmail author
  • Evgenya V. Shavrina
  • Vladimir Y. Modorskii
  • Konstantin A. Barkalov
  • Victor P. Gergel
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 753)


We describe in this article the optimization calculations of spray droplets in a gas injected through a nozzle into a work area, as a part of a research icing on model objects in a small-size climatic wind tunnel. Calculations were performed in a three-dimensional formulation. It is assumed that the drop has some speed, temperature and diameter as it enters the gas flow, which has a specified speed and temperature, so that certain temperature limits are attained when it interacts with a remote obstruction. We determined the maximum gas flow temperature, which corresponds to the minimum of cooling energy consumption. The optimization was carried out using the Globalizer software (Lobachevsky State University of Nizhny Novgorod). Also, we could solve the integration issue between Globalizer and ANSYS Workbench 13.0. ANSYS was employed as a tool to calculate optimization criteria values, whereas Globalizer was used as an optimal parameter search tool. Calculations were performed on the PNRPU high-performance cluster (with a peak performance of 24 TFLOPS).


Small-size climatic wind tunnel Global optimization Multiextremal functions Parallel algorithms Droplets flying Numerical simulation Gas flow 


  1. 1.
    Modorskii, V.Y., Shevelev, N.A.: Research of aerohydrodynamic and aeroelastic processes on PNRPU HPC system. In: Fomin, V. (ed.) ICMAR 2016, AIP Conference Proceedings, vol. 1770, art. no. 020001 (2016). doi: 10.1063/1.4963924
  2. 2.
    Shmakov, A.F., Modorskii, V.Y.: Energy conservation in cooling systems at metallurgical plants. Metallurgist 59(9–10), 882–886 (2016). doi: 10.1007/s11015-016-0188-8 CrossRefGoogle Scholar
  3. 3.
    Kalyulin, S.L., Modorskii, V.Y., Paduchev, A.P.: Numerical design of the rectifying lattices in a small-sized wind tunnel. In: Fomin, V. (ed.) ICMAR 2016, AIP Conference Proceedings, vol. 1770, art. no. 030110 (2016). doi: 10.1063/1.4964052
  4. 4.
    Afanasiev, V.A., Barsukov, V.S., Gofin, M.Y., Zakharov, Y.V., Strelchenko, A.N., Shalunov, N.P.: Experimental testing of spacecraft. MAI, Moscow (1994). (in Russian)Google Scholar
  5. 5.
    Goryachev, A.V., Mezhzil, E.K., Petrov, S.B., Syrov, V.A., Harlamov, A.V., Chivanov, S.V.: A way of ground testing objects of aircraft, subject to icing, and a device for its implementation. Patent RF, no. 2345345 (2007)Google Scholar
  6. 6.
    Klemenkov, G.P., Prihodko, Y.M., Puzyrev, L.N., Haritonov, A.M.: Modelling of aircraft icing processes in aeroclimatic tubes. Thermophys. Aeromeh. 15(4), 563–572 (2008). (in Russian)Google Scholar
  7. 7.
    Alekseenko, S.V., Prihodko, A.A.: Numerical simulation of icing cylinder and profile. Models review and calculation results. TsAGI Sci. J. 44(6), 25–57 (2013). (in Russian)Google Scholar
  8. 8.
    Prihodko, A.A., Alekseenko, S.V.: Numerical simulation of icing aerodynamic surfaces in the presence of large overcooled water drops. JETP Lett. 40(19), 75–82 (2014). (in Russian)Google Scholar
  9. 9.
    Hannat, R., Morency, F.: Numerical validation of conjugate heat transfer method for anti-/de-icing piccolo system. J. Aircr. 51(1), 104–116 (2014). doi: 10.2514/1.c032078 CrossRefGoogle Scholar
  10. 10.
    Villalpando, F., Reggio, M., Ilinca, A.: Prediction of ice accretion and anti-icing heating power on wind turbine blades using standard commercial software. Energy 114, 1041–1052 (2016). doi: 10.1016/ CrossRefGoogle Scholar
  11. 11.
    Lynch, F.T., Khodadoust, A.: Effects of ice accretions on aircraft aerodynamics. Prog. Aeosp. Sci. 37(8), 669–767 (2001). doi: 10.1016/s0376-0421(01)00018-5 CrossRefGoogle Scholar
  12. 12.
    Bragg, M.B., Broeren, A.P., Blumenthal, L.A.: Iced-airfoil aerodynamics. Prog. Aeosp. Sci. 41(5), 323–362 (2005). doi: 10.4271/2003-01-2098 CrossRefGoogle Scholar
  13. 13.
    Modorskii, V.Y., Sipatov, A.M., Babushkina, A.V., Kolodyazhny, D.Y., Nagorny, V.S.: Modeling technique for the process of liquid film disintegration. In: Fomin, V. (ed.) ICMAR 2016, AIP Conference Proceedings, vol. 1770, art. no. 030109 (2016). doi: 10.1063/1.4964051
  14. 14.
    Gaynutdinova, D.F., Modorsky, V.Y., Masich, G.F.: Infrastructure of data distributed processing in high-speed process research based on hydroelasticity tasks. In: Sloot, P. (ed.) YSC, Procedia Computer Science, vol. 66, pp. 556–563 (2015). doi: 10.1016/j.procs.2015.11.063
  15. 15.
    Modorskii, V.Y., Gaynutdinova, D.F., Gergel, V.P., Barkalov, K.A.: Optimization in design of scientific products for purposes of cavitation problems. In: Simos, T.E. (ed.) ICNAAM 2015, AIP Conference Proceedings, vol. 1738, art. no. 400013 (2016). doi: 10.1063/1.4952201
  16. 16.
    Modorskii, V.Y., Sokolkin, Y.V.: Dynamic behavior of a thick-walled cylinder under pressurization. Izv. Vyss. Uchebnykh Zaved. Aviats. Tek. 4, 14–16 (2002)Google Scholar
  17. 17.
    Kozlova, A.V., Modorskii, V.Y., Ponik, A.N.: Modeling of cooling processes in the variable section channel of a gas conduit. Rus. Aeronaut. 53(4), 401–407 (2010). doi: 10.3103/s1068799810040057 CrossRefGoogle Scholar
  18. 18.
    Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints. Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000). doi: 10.1007/978-1-4615-4677-1 CrossRefzbMATHGoogle Scholar
  19. 19.
    Barkalov, K.A., Strongin, R.G.: A global optimization technique with an adaptive order of checking for constraints. Comput. Math. Math. Phys. 42(9), 1289–1300 (2002)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Gergel, V.P., Strongin, R.G.: Parallel computing for globally optimal decision making on cluster systems. Future Gener. Comput. Syst. 21(5), 673–678 (2005). doi: 10.1016/j.future.2004.05.007 CrossRefGoogle Scholar
  21. 21.
    Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. Springer, New York (2013). doi: 10.1007/978-1-4614-8042-6 CrossRefzbMATHGoogle Scholar
  22. 22.
    Barkalov, K., Ryabov, V., Sidorov, S.: Parallel scalable algorithms with mixed local-global strategy for global optimization problems. In: Hsu, C.-H., Malyshkin, V. (eds.) MTPP 2010. LNCS, vol. 6083, pp. 232–240. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14822-4_26 CrossRefGoogle Scholar
  23. 23.
    Barkalov, K., Gergel, V., Lebedev, I.: Use of xeon phi coprocessor for solving global optimization problems. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 307–318. Springer, Cham (2015). doi: 10.1007/978-3-319-21909-7_31 CrossRefGoogle Scholar
  24. 24.
    Barkalov, K., Gergel, V.: Parallel Global Optimization on GPU. J. Glob. Optim. 66(1), 3–20 (2016). doi: 10.1007/s10898-016-0411-y MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Barkalov, K., Gergel, V., Lebedev, I.: Solving global optimization problems on GPU cluster. In: Simos, T.E. (ed.) ICNAAM 2015, AIP Conference Proceedings, vol. 1738, art. no. 400006 (2016). doi: 10.1063/1.4952194
  26. 26.
    Gergel, V., Sidorov, S.: A two-level parallel global search algorithm for solution of computationally intensive multiextremal optimization problems. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 505–515. Springer, Cham (2015). doi: 10.1007/978-3-319-21909-7_49 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Perm National Research Polytechnical UniversityPermRussia
  2. 2.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations