High-Performance BEM Simulation of 3D Emulsion Flow

  • Olga A. AbramovaEmail author
  • Yulia A. Pityuk
  • Nail A. Gumerov
  • Iskander S. Akhatov
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 753)


Direct simulations of the dynamics of a large number of deformable droplets are necessary for a more accurate prediction of rheological properties and the microstructure of liquid-liquid systems that arise in a wide range of industrial applications, such as enhanced oil recovery, advanced material processing, and biotechnology. The present study is dedicated to the development of efficient computational methods and tools for understanding the behavior of three dimensional emulsion flows in Stokes regime. The numerical approach is based on the accelerated boundary element method (BEM) both via an efficient scalable algorithm, the fast multipole method (FMM), and via the utilization of advanced hardware, particularly, heterogeneous computing architecture (multicore CPUs and graphics processors). Example computations are conducted for 3D dynamics of systems of tens of thousands of deformable drops and several droplets with very high discretization of the interface in shear flow. The results of simulations and details of the method and accuracy/performance of the algorithm are discussed. The developed approach can be used for the solution of a wide range of problems related to emulsion flows in micro- and nanoscales.


Deformable droplets Stokes flow Boundary element method Fast multipole method Graphics processors 


  1. 1.
    Abramova, O.A., Itkulova, Y.A., Gumerov, N.A.: Modelirovanie trehmernogo dvijeniya deformiruemih kapel v stoksovom regime metodom granichnih elementov. Comput. Contin. Mech. 6(2), 214–223 (2013)CrossRefGoogle Scholar
  2. 2.
    Abramova, O.A., Itkulova, Y.A., Gumerov, N.A., Akhatov, I.S.: Three-dimensional simulation of the dynamics of deformable droplets of an emulsion using the boundary element method and the fast multipole method on heterogeneous computing systems. Vychislitelnye Metody i Programmirovanie 14, 438–450 (2013)Google Scholar
  3. 3.
    Cox, R.G.: The deformation of drop in general time-dependent fluid flow. J. Fluid Mech. 37(3), 601–623 (1969). doi: 10.1017/s0022112069000759 CrossRefzbMATHGoogle Scholar
  4. 4.
    Cunha, F.R., Almeida, M.H.P., Loewenberg, M.: Direct numerical simulations of emulsion flows. J. Braz. Soc. Mech. Sci. Eng. 25(1), 30–40 (2003). doi: 10.1590/s1678-58782003000100005 CrossRefGoogle Scholar
  5. 5.
    Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987). doi: 10.1006/jcph.1997.5706 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gumerov, N.A., Duraiswami, R.: Fast multipole methods on graphics processors. J. Comput. Phys. 227(18), 8290–8313 (2008). doi: 10.1016/ MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics. Springer, Dordrecht (1981). doi: 10.1007/978-94-009-8352-6. 553 pagesCrossRefzbMATHGoogle Scholar
  8. 8.
    Hu, Q., Gumerov, N.A., Duraiswami, R. Scalable fast multipole methods on distributed heterogeneous architectures. In: Proceedings of Supercomputing 2011, Seattle, Washington (2011). doi: 10.1145/2063384.2063432
  9. 9.
    Hu, Q., Gumerov, N.A., Duraiswami, R.: Scalable distributed fast multipole methods. In: Proceedings of the 2012 IEEE 14th International Conference on High Performance Computing and Communications, UK, Liverpool, pp. 270–279 (2012). doi: 10.1109/ipdpsw.2014.110
  10. 10.
    Itkulova, Y.A., Solnyshkina, O.A., Gumerov, N.A.: Toward large scale simulations of emulsion flows in microchannels using fast multipole and graphics processor accelerated boundary element method. In: Proceedings of ASME 2012 International Mechanical Engineering Congress Exposition, IMECE 2012, USA, Houston (2012). doi: 10.1115/imece2012-86238
  11. 11.
    Kennedy, M.R., Pozrikidis, C., Skalak, R.: Motion and deformation of liquid drops, and the rheology of dilute emulsions in simple shear flow. Comput. Fluids 23(2), 251–278 (1994). doi: 10.1016/0045-7930(94)90040-x CrossRefzbMATHGoogle Scholar
  12. 12.
    Loewenberg, M., Hinch, E.J.: Collision of two deformable drops in shear flow. J. Fluid Mech. 338, 299–315 (1997). doi: 10.1017/s0022112097005016 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Loewenberg, M., Hinch, E.J.: Numerical simulation of a concentrated emulsion in shear flow. J. Fluid Mech. 321, 395–419 (1996). doi: 10.1017/s002211209600777x CrossRefzbMATHGoogle Scholar
  14. 14.
    Pozrikidis, C.: Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press, Cambridge (1992). doi: 10.1017/cbo9780511624124. 259 pagesCrossRefzbMATHGoogle Scholar
  15. 15.
    Rallison, J.M., Acrivos, A.: A numerical study of the deformation and burst of a viscous drop in an extensional flow. J. Fluid Mech. 89(1), 191–200 (1978). doi: 10.1017/s0022112078002530 CrossRefzbMATHGoogle Scholar
  16. 16.
    Rallison, J.M.: A numerical study of the deformation and burst of a viscous drop in general shear flows. J. Fluid Mech. 109, 465 (1981). doi: 10.1017/s002211208100116x CrossRefzbMATHGoogle Scholar
  17. 17.
    Rumscheidt, F.D., Mason, S.G.: Particle motions in sheared suspensions XII. Deformation and bust of fluid drops in shear and hyperbolic flow. J. Colloid Interface Sci. 16, 238 (1961). doi: 10.1016/0095-8522(61)90003-4 CrossRefGoogle Scholar
  18. 18.
    Saad, Y.: Iterative Methods for Sparse Linear System, 2nd edn. SIAM, Philadelphia (2000). doi: 10.1137/1.9780898718003. 534 pagesGoogle Scholar
  19. 19.
    Sangani, A.S., Mo, G.: An O(N) algorithm for Stokes and Laplace interactions of particles. Phys. Fluids 8(8), 1990–2010 (1996). doi: 10.1063/1.869003 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Tornberg, A.K., Greengard, L.: A fast multipole method for the three-dimensional Stokes equations. J. Comput. Phys. 227(3), 1613–1619 (2008). doi: 10.1016/ MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Torza, C., Cox, R.G., Mason, S.G.: Particle motions in sheared suspensions XXVI. Streamlines in and around liquid drops. J. Colloid Interface Sci. 35, 529 (1972). doi: 10.1016/0021-9797(71)90211-6 CrossRefGoogle Scholar
  22. 22.
    Wang, H., Lei, T., Li, J., Huang, J., Yao, Z.: A parallel fast multipole accelerated integral equation scheme for 3D Stokes equations. Int. J. Numer. Methods Eng. 70, 812–839 (2007). doi: 10.1002/nme.1910 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zinchenko, A.Z., Davis, R.H.: An efficient algorithm for hydrodynamical interaction of many deformable drops. J. Comput. Phys. 157, 539–587 (2000). doi: 10.1006/jcph.1999.6384 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Zinchenko, A.Z., Davis, R.H.: A multipole-accelerated algorithm for close interaction of slightly deformable drops. J. Comput. Phys. 207, 695–735 (2005). doi: 10.1016/ CrossRefzbMATHGoogle Scholar
  25. 25.
    Zinchenko, A.Z., Davis, R.H.: Large-scale simulations of concentrated emulsion flows. Philos. Trans. R. Soc. Lond. A 361, 813–845 (2003). doi: 10.1098/rsta.2003.1178 CrossRefzbMATHGoogle Scholar
  26. 26.
    Zinchenko, A.Z., Rother, M.A., Davis, R.H.: A novel boundary-integral algorithm for viscous interaction of deformable drops. Phys. Fluids 9(6), 1493–1511 (1997). doi: 10.1063/1.869275 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Olga A. Abramova
    • 1
    Email author
  • Yulia A. Pityuk
    • 1
  • Nail A. Gumerov
    • 1
    • 2
  • Iskander S. Akhatov
    • 3
  1. 1.Center for Micro and Nanoscale Dynamics of Dispersed SystemsBashkir State UniversityUfaRussia
  2. 2.Institute for Advanced Computer StudiesUniversity of MarylandCollege ParkUSA
  3. 3.Skolkovo Institute of Science and Engineering (Skoltech)MoscowRussia

Personalised recommendations