Skip to main content

Development of a High Performance Code for Hydrodynamic Calculations Using Graphics Processor Units

  • Conference paper
  • First Online:
Parallel Computational Technologies (PCT 2017)

Abstract

The paper presents the results of the implementation of computational algorithms of hydrodynamics for using graphics processor units. The implementation was carried out on the basis of the in-house CFD code SigmaFlow. Numerical simulations were based on the solution of the Navier-Stokes equations using SIMPLE-like procedure. The discretization of the differential equations was based on the control volume method on unstructured mesh. In the case of multiple CPU/GPU, parallel calculations were performed by means of domain decomposition. In the GPU-version of the code, basic computational functions were implemented as CUDA kernels to perform on GPUs. The code has been verified using several test cases. The computational efficiencies of several GPUs were compared with each other and that of modern CPUs. A modern GPU can increase the calculation performance of CFD problems by more than two times compared to a modern six-core CPU.

The work was financially supported by the Russian Foundation for Basic Research, the Government of Krasnoyarsk Territory, and the Krasnoyarsk Region Science and Technology Support Fund, research project No16-41-243033.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Top500 list. https://www.top500.org/lists/2016/06/

  2. Li, R., Saad, Y.: GPU-accelerated preconditioned iterative linear solvers. J. Supercomputi. 63(2), 443–466 (2013). doi:10.1007/s11227-012-0825-3

    Article  Google Scholar 

  3. Rinaldi, P.R., Dari, E.A., Venere, M.J., Clausse, A.A.: Lattice-Boltzmann solver for 3D Fluid simulation on GPU. Simul. Model. Pract. Theor. 25, 163–171 (2012). doi:10.1016/j.simpat.2012.03.004

    Article  Google Scholar 

  4. Corrigan, A., Camelli, F.F., Lohner, R., Wallin, J.: Running unstructured grid-based CFD solvers on modern graphics hardware. Int. J. Numer. Methods Fluids 66(2), 221–229 (2011). doi:10.1002/fld.2254

    Article  MathSciNet  MATH  Google Scholar 

  5. Waltz, J.: Performance of a three-dimensional unstructured mesh compressible flow solver on NVIDIA Fermi-class graphics processing unit hardware. Int. J. Numer. Methods Fluids 72(2), 259–268 (2013). doi:10.1002/fld.3744

    Article  MathSciNet  Google Scholar 

  6. Gavrilov, A.A., Dekterev, A.A., Sentyabov, A.V.: Modeling of swirling flows with coherent structures using the unsteady reynolds stress transport model. Fluid Dyn. 50(4), 471–482 (2015). doi:10.1134/S001546281504002X

    Article  MathSciNet  MATH  Google Scholar 

  7. Pope, S.B.: Turbulent Flows. Cambridge University Press, New York (2000)

    Book  MATH  Google Scholar 

  8. Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62(3), 183–200 (1999). doi:10.1023/A: 1009995426001

    Article  MATH  Google Scholar 

  9. Mavriplis, J.: Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes. AIAA-Paper 2003–3986, June 2003. doi:10.2514/6.2003-3986

  10. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics. Springer, New York (2002). doi:10.1007/978-3-642-56026-2

    Book  MATH  Google Scholar 

  11. Moukalled, F., Darwish, M.: A unified formulation of the segregated class of algorithms for fluid flow at all speeds. Numer. Heat Transf. Part B 37(2), 227–246 (2000). doi:10.1080/104077900275576

    Article  Google Scholar 

  12. Patankar, S.: Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation, New York (1980)

    MATH  Google Scholar 

  13. Rhie, C.M., Chow, W.L.: A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA J. 21, 1525–1532 (1983)

    Article  MATH  Google Scholar 

  14. Leonard, B.P.: A stable and accurate convective modeling procedure based on quadratic upstream interpolation. Comput. Math. Appl. Mech. Eng. 19, 59–98 (1979). doi:10.1016/0045-7825(79)90034-3

    Article  MATH  Google Scholar 

  15. Leschziner, M.A., Lien, F.S.: Upstream monotonic interpolation for scalar transport with application to complex turbulent flows. Int. J. Numer. Methods Fluids 19(6), 527–548 (1994). doi:10.1002/fld.1650190606

    Article  MATH  Google Scholar 

  16. Barrett, R., Berry, M., Chan, T.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1994). doi:10.1137/1.9781611971538

    Book  Google Scholar 

  17. Karypis, G., Kumar, V.: A fast and highly quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1999). doi:10.1137/S1064827595287997

    Article  MATH  Google Scholar 

  18. Michelsen, J.A.: Modeling incompressible rotating fluid flow. Ph.D. thesis, Technical University of Denmark (1986)

    Google Scholar 

  19. Escudier, M.P.: Observation of the flow produced in a cylindrical container by a rotating endwall. Exp. Fluids 2(4), 189–196 (1984). doi:10.1007/BF00571864

    Article  Google Scholar 

  20. Zdravkovich, M.M.: Flow Around Circular Cylinders: Fundamentals, vol. 1. Oxford University Press, New York (1997). doi:10.1017/S0022112097227291

    MATH  Google Scholar 

  21. Rajani, B., Kandasamy, A., Majumdar, S.: Numerical simulation of laminar flow past a circular cylinder. Appl. Math. Model. 33, 1228–1247 (2009). doi:10.1016/j.apm.2008.01.017

    Article  MathSciNet  MATH  Google Scholar 

  22. Shoeybi, M., Svard, M., Ham, F.E., Moin, P.: An adaptive implicit-explicit scheme for the DNS and LES of compressible flows on unstructured grids. J. Comput. Phys. 229, 5944–5965 (2010). doi:10.1016/j.jcp.2010.04.027

    Article  MathSciNet  MATH  Google Scholar 

  23. Akula, B., Roy, P., Razi, P., Anderson, S., Girimaji, S.: Partially-Averaged Navier-Stokes (PANS) simulations of lid-driven cavity flow - Part 1: comparison with URANS and LES. In: Girimaji, S., Haase, W., Peng, S.H., Schwamborn, D. (eds.) Progress in Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 130, pp. 421–430. Springer, Cham (2015). doi:10.1007/978-3-319-15141-0_29

    Chapter  Google Scholar 

  24. Francis-99 Workshop I (2017). http://www.ltu.se/research/subjects/Stromningslara/Konferenser/Francis-99

  25. Minakov, A.V., Sentyabov, A.V., Platonov, D.V., Dekterev, A.A., Gavrilov, A.A.: Numerical modeling of flow in the Francis-99 turbine with Reynolds stress model and detached eddy simulation method. J. Phys. Conf. Ser. 579(1) (2015). doi:10.1088/1742-6596/579/1/012004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Sentyabov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sentyabov, A.V., Gavrilov, A.A., Krivov, M.A., Dekterev, A.A., Pritula, M.N. (2017). Development of a High Performance Code for Hydrodynamic Calculations Using Graphics Processor Units. In: Sokolinsky, L., Zymbler, M. (eds) Parallel Computational Technologies. PCT 2017. Communications in Computer and Information Science, vol 753. Springer, Cham. https://doi.org/10.1007/978-3-319-67035-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67035-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67034-8

  • Online ISBN: 978-3-319-67035-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics