Supercomputer Modeling of Generation of Electromagnetic Radiation by Beam–Plasma Interaction

  • Evgeny Berendeev
  • Marina Boronina
  • Galina Dudnikova
  • Anna EfimovaEmail author
  • Vitaly Vshivkov
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 753)


We construct in this article a two-dimensional particle-in- cell (PIC) numerical model of electron beam - plasma interaction based on the kinetic description of both ion and electron components with a continuously injected electron beam, and develop the corresponding parallel code. In this model, an electron beam, entering the plasma along magnetic field lines through one boundary and leaving it through the other, provides a continuous pumping of plasma oscillations. Such a problem statement requires that the model be constructed in a sufficiently long plasma region, where the time is long enough for the beam to be captured by the exciting wave field. The parallel algorithm was successfully applied to the solution of resource-intensive problem by efficiently using large numbers of computational cores.


Particle-in-cell methods Maxwell’s equations Vlasov equation Open plasma trap Generation of electromagnetic radiation 


  1. 1.
    Berendeev, E.A., Efimova, A.A.: Effective parallel calculations realization for modeling big problems of the plasma physics by the PIC-method. Vestnik UGATU 17(2(55)), 112–116 (2013)Google Scholar
  2. 2.
    Efimova, A.A., Berendeev, E.A., Dudnikova, G.I., Vshivkov, V.A.: Numerical simulation of nonlinear processes in a beam-plasma system. In: AIP Conference Proceedings, vol. 1684, p. 100001 (2015)Google Scholar
  3. 3.
    Burdakov, A.V., Avrorov, A.P., Arzhannikov, A.V., Astrelin, V.T., et al.: Development of extended heating pulse operation mode at GOL-3. Fusion Sci. Technol. 63(1T), 29–34 (2013)CrossRefGoogle Scholar
  4. 4.
    Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comp. 31(139), 629–651 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Mur, G.: Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE Trans. Electromagnet. Compatib. 23(4), 377–382 (1981)CrossRefGoogle Scholar
  6. 6.
    Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antenn. Propagat. AP–14(3), 302–307 (1966)zbMATHGoogle Scholar
  7. 7.
    Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation. Institute of Physics Publishing, Bristol (1991)CrossRefGoogle Scholar
  8. 8.
    Berezin, Y.A., Vshivkov, V.A.: Particles Method in the Dynamics of a Rarefied Plasma. Nauka, Novosibirsk (1980)Google Scholar
  9. 9.
    Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. CRC Press, Boca Raton (1988)CrossRefzbMATHGoogle Scholar
  10. 10.
    Boris, J.P.: Relativistic plasma simulation - optimization of a hybrid code. In: Fourth Conference on Numerical Simulation of Plasmas, Washington, pp. 3–67 (1970)Google Scholar
  11. 11.
    Langdon, A.B., Lasinski, B.F.: Electromagnetic and relativistic plasma simulation models. Meth. Comput. Phys. 16, 327–366 (1976)Google Scholar
  12. 12.
    Villasenor, J., Buneman, O.: Rigorous charge conservation for local electromagnetic field solver. Comput. Phys. 69, 306–316 (1992)CrossRefGoogle Scholar
  13. 13.
    Berendeev, E., Dudnikova, G., Efimova, A., Vshivkov, V.: Computer simulation of plasma dynamics in open plasma trap. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) NAA 2016. LNCS, vol. 10187, pp. 227–234. Springer, Cham (2017). doi: 10.1007/978-3-319-57099-0_23 CrossRefGoogle Scholar
  14. 14.
    Berendeev, E.A., Dudnikova, G.I., Efimova, A.A., Ivanov, A.V., Vshivkov, V.A.: Computer simulation of cylindrical plasma target trap with inverse magnetic mirrors. In: AIP Conference Proceedings, vol. 1771, p. 030009 (2016)Google Scholar
  15. 15.
    Boronina, M.A., Vshivkov, V.A.: Parallel 3-D particle-in-cell modelling of charged ultrarelativistic beam dynamics. J. Plasma Phys. 81(6) (2015)Google Scholar
  16. 16.
    Andrianov, A.N., Efimkin, K.N.: Approach to parallel implementation of the particles in cell method. Preprints Keldysh Institute of Applied Mathematics, No. 9 (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Evgeny Berendeev
    • 1
  • Marina Boronina
    • 1
  • Galina Dudnikova
    • 2
  • Anna Efimova
    • 1
    Email author
  • Vitaly Vshivkov
    • 1
  1. 1.Institute of Computational Mathematics and Mathematical GeophysicsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Computational TechnologiesSiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations