Parallel Implementation of a Monte Carlo Algorithm for Simulation of Cathodoluminescence Contrast Maps

  • Karl K. Sabelfeld
  • Anastasiya E. KireevaEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 753)


We suggest a parallel implementation of a Monte Carlo method for cathodoluminescence contrast maps simulation based on a random walk on spheres algorithm developed by K. K. Sabelfeld for solving drift-diffusion problems. The method for cathodoluminescence imaging in the vicinity of external forces is based on the explicit representation of the exit point probability density. This makes it possible to simulate exciton trajectories governed by drift-diffusion-reaction equations with a recombination condition on the surface of dislocations or other defects in crystals. In this study, we apply the developed stochastic algorithm to construct a parallel implementation that uses the OpenMP and MPI standards and is based on a distribution of simulated exciton trajectories starting at a given source. The number of self-annihilated excitons is evaluated as a function of the distance between the exciton source and the dislocation. The algorithm is tested against exact results.


Cathodoluminescence Drift-diffusion problem Random walk on spheres algorithm Monte Carlo algorithm Parallel implementation 


  1. 1.
    Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Vienna (1984). doi: 10.1007/978-3-7091-8752-4 CrossRefGoogle Scholar
  2. 2.
    Sijerčić, E., Mueller, K., Pejčinović, B.: Simulation of InSb devices using drift-diffusion equations. Solid-State Electron. 49(8), 1414–1421 (2005). doi: 10.1016/j.sse.2005.05.012 CrossRefGoogle Scholar
  3. 3.
    Boggs, S., Krinsley, D.: Application of Cathodoluminescence Imaging to the Study of Sedimentary Rocks. Cambridge University Press, New York (2006). doi: 10.1017/cbo9780511535475.008 CrossRefGoogle Scholar
  4. 4.
    Knox, R.S.: Theory of excitons. In: Seitz, F., Turnbul, D. (eds.) Solid State Physics. Academic Press, New York (1963)Google Scholar
  5. 5.
    Sabelfeld, K.K.: Random walk on spheres method for solving drift-diffusion problems. Monte Carlo Methods Appl. 22(4), 265–275 (2016). doi: 10.1515/mcma-2016-0118 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Müller, M.E.: Some continuous Monte Carlo methods for the Dirichlet problem. Ann. Math. Statist. 27(3), 569–589 (1956). doi: 10.1214/aoms/1177728169 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fishman, G.: Monte Carlo: Algorithms and Applications. Operations Research and Financial Engineering, Concepts. Springer, New York (1996)CrossRefzbMATHGoogle Scholar
  8. 8.
    Rosenthal, J.S.: Parallel computing and Monte Carlo algorithms. Far East J. Theor. Stat. 4, 207–236 (2000)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Esselink, K., Loyens, L.D.J.C., Smit, B.: Parallel Monte Carlo Simulations. Phys. Rev. E 51(2), 1560–1568 (1995). doi: 10.1103/physreve.51.1560 CrossRefGoogle Scholar
  10. 10.
    Sabelfeld, K.K., Kaganer, V.M., Pfüller, C., Brandt, O.: Dislocation contrast in cathodoluminescence and electron-beam induced current maps on GaN(0001). Cornell University Library. Materials Science arXiv:1611.06895 [cond-mat.mtrl-sci]
  11. 11.
    Sabelfeld, K.K.: Splitting and survival probabilities in stochastic random walk methods and applications. Monte Carlo Methods Appl. 22(1), 55–72 (2016). doi: 10.1515/mcma-2016-0103 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Computational Mathematics and Mathematical GeophysicsNovosibirskRussia

Personalised recommendations