Simulation of Global Seismicity: New Computing Experiments with the Use of Scientific Visualization Software

  • Lidiya Melnikova
  • Igor Mikhailov
  • Valeriy RozenbergEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 753)


The paper briefly describes a modification of the spherical model of lithosphere seismicity taking into account random factors that influence the dynamics of parameters of interacting block structure elements. We present the results of numerical experiments that confirm the benefits of adopting stochastic procedures in the model. Also, we designed a special software to study the process of model stress propagation in the system of tectonic plates in detail. This software allows for the visualization of both the instantaneous stress distribution along a fault and the temporal migration of critical values. New possibilities are used for testing different interconnections between model characteristics and comparing them with real patterns. Finally, we investigate the role of exogenous and endogenous parameters in the model calibration.


Block-and-fault models of lithosphere dynamics and seismicity Earthquake catalogs Scientific visualization software 


  1. 1.
    Gabrielov, A.M., Newman, W.I.: Seismicity Modeling and Earthquake Prediction: A Review. Geophysical Monograph 83, vol. 18, pp. 7–13. IUGG, Washington (1994)Google Scholar
  2. 2.
    Keilis-Borok, V.I., Soloviev, A.A. (eds.): Nonlinear Dynamics of the Lithosphere and Earthquake Prediction. Springer, Heidelberg (2003). doi: 10.1007/978-3-662-05298 Google Scholar
  3. 3.
    Peresan, A., Vorobieva, I.A., Soloviev, A.A., Panza, G.F.: Simulation of seismicity in the block-structure model of Italy and its surroundings. Pure Appl. Geophys. 164, 2193–2234 (2007). doi: 10.1007/s00024-007-0273-9 CrossRefGoogle Scholar
  4. 4.
    Rozenberg, V.L., Sobolev, P.O., Soloviev, A.A., Melnikova, L.A.: The spherical block model: dynamics of the global system of tectonic plates and seismicity. Pure Appl. Geophys. 162, 145–164 (2005). doi: 10.1007/s00024-004-2584-4 CrossRefGoogle Scholar
  5. 5.
    Melnikova, L.A., Rozenberg, V.L.: Spherical block model of lithosphere dynamics and seismicity: different modifications and numerical experiments. In: Proceedings of IMM UB RAS, Ekaterinburg, vol. 13, no. 3, pp. 95–120 (2007). (in Russian)Google Scholar
  6. 6.
    Melnikova, L.A., Rozenberg, V.L.: A stochastic modification of the spherical block-and-fault model of lithosphere dynamics and seismicity. Numer. Methods Program. 16, 112–122 (2015). (in Russian)Google Scholar
  7. 7.
    Oksendal, B.: Stochastic Differential Equations: An Introduction with Application. Springer, New York (1998). doi: 10.1007/978-3-662-03620-4. Mir, Moscow (2003)CrossRefzbMATHGoogle Scholar
  8. 8.
    Aki, K., Richards, P.G.: Quantitative Seismology: Theory and Methods. Freeman, San Francisco (1980). doi: 10.1002/gj.3350160110. Mir, Moscow (1983)Google Scholar
  9. 9.
    Wells, D.L., Coppersmith, K.L.: New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seism. Soc. Am. 84(4), 974–1002 (1994)Google Scholar
  10. 10.
    Gripp, A.E., Gordon, R.G.: Young tracks of hotspots and current plate velocities. Geophys. J. Int. 150, 321–361 (2002). doi: 10.1046/j.1365-246x.2002.01627.x CrossRefGoogle Scholar
  11. 11.
    Manakov, D.V., Averbukh, V.L.: Verification of visualization. Sci. Visual. 8(1), 58–94 (2016). (in Russian)Google Scholar
  12. 12.
    Global Hypocenters Data Base, NEIC/USGS, Denver, CO.
  13. 13.
    Gabrielov, A.M., Keilis-Borok, V.I., Jackson, D.D.: Geometric incompatibility in a fault system. Proc. Natl. Acad. Sci. USA 93(9), 3838–3842 (1996). doi: 10.1073/pnas.93.9.3838 CrossRefGoogle Scholar
  14. 14.
    Gergel’, V.P.: Theory and Practice of Parallel Computing. Binom, Moscow (2007). (in Russian)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Lidiya Melnikova
    • 1
  • Igor Mikhailov
    • 2
  • Valeriy Rozenberg
    • 1
    Email author
  1. 1.Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of SciencesEkaterinburgRussia
  2. 2.Applied Technologies, Ltd.EkaterinburgRussia

Personalised recommendations