Advertisement

High-Performance Simulation of Electrical Logging Data in Petroleum Reservoirs Using Graphics Processors

  • Vyacheslav GlinskikhEmail author
  • Alexander DudaevEmail author
  • Oleg NechaevEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 753)

Abstract

The work is concerned with the development of numerical algorithms for solving direct problems of borehole geoelectrics by applying high-performance computing on GPUs. The numerical solution of the direct 2D problem is based on the finite-element method and the Cholesky decomposition for solving a system of linear equations. The software implementations of the algorithm are made by means of the NVIDIA CUDA technology and computing libraries making it possible to decompose the equation system and find its solution on CPU and GPU. The analysis of computing time as a function of the matrix order has shown that in the case at hand the computations are the most effective when decomposing on GPU and finding a solution on CPU. We have estimated the operating speed of CPU and GPU computations, as well as high-performance CPU–GPU ones. Using the developed algorithm, we have simulated electrical logging data in realistic models.

Keywords

Graphics processing units Parallel algorithm Finite-element method Direct 2D problem Electrical logging data 

References

  1. 1.
    Eremin, V.N., Nechaev, O.V., Haberhauer, S., Shokina, N., Shurina, E.P.: Parallel realization of mathematical modelling of electromagnetic logging processes using VIKIZ probe complex. Comput. Technol. 12(6), 18–33 (2007). (In Russian)zbMATHGoogle Scholar
  2. 2.
    Epov, M.I., Shurina, E.P., Nechaev, O.V.: 3D forward modeling of vector field for induction logging problems. Geol. Geophys. 48(9), 770–774 (2007)CrossRefGoogle Scholar
  3. 3.
    Surodina, I.V., Epov, M.I.: High-frequency induction data affected by biopolymer-based drilling fluids. Geol. Geophys. 53(8), 817–822 (2012)CrossRefGoogle Scholar
  4. 4.
    Glinskikh, V.N., Epov, M.I., Labutin, I.B.: Electromagnetic logging data simulation on GPUs. Comput. Technol. 13(6), 50–60 (2008). (In Russian)Google Scholar
  5. 5.
    Glinskikh, V.N., Bulantceva, Y.: Mathematical simulation of electromagnetic logs using high-performance co-processor Intel Xeon Phi Vestnik of NGU. Math. Mech. Inform. 14(4), 11–22 (2014). (In Russian)Google Scholar
  6. 6.
    Glinskikh, V.N., Gorbatenko, V.A.: Electromagnetic logging data inversion on GPU. Comput. Technol. 20(1), 25–37 (2015). (In Russian)Google Scholar
  7. 7.
    Labutin, I.B., Surodina, I.V.: Algorithm for sparse approximate inverse preconditioners in the conjugate gradient method. Reliable Comput. 19, 120–126 (2013)MathSciNetGoogle Scholar
  8. 8.
    Davis, T.A., Rajamanickam, S., Sid-Lakhdar, W.M.: A survey of direct methods for sparse linear systems. Acta Numerica 25, 383–566 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Mittal, S., Vetter, J.S.: A survey of CPU-GPU heterogeneous computing techniques. ACM Comput. Surv. 47(4), 69:1–69:35 (2015)CrossRefGoogle Scholar
  10. 10.
    Sao, P., Vuduc, R., Li, X.S.: A distributed CPU-GPU sparse direct solver. In: Silva, F., Dutra, I., Santos Costa, V. (eds.) Euro-Par 2014. LNCS, vol. 8632, pp. 487–498. Springer, Cham (2014). doi: 10.1007/978-3-319-09873-9_41 Google Scholar
  11. 11.
    Dakhnov, V.N.: Electrical and Magnetic Borehole Survey Techniques. Nedra, Moscow (1981). 344 p. (In Russian)Google Scholar
  12. 12.
    Epov, M.I., Glinskikh, V.N.: Fast two-dimensional simulation of high-frequency electromagnetic field in induction logging. Russ. Geol. Geophys. 44(9), 904–915 (2003)Google Scholar
  13. 13.
    Epov, M.I., Glinskikh, V.N.: Linearization of relative parameters of a high-frequency magnetic field in two-dimensional conducting media. Russ. Geol. Geophys. 45(2), 247–257 (2004)Google Scholar
  14. 14.
    Glinskikh, V.N., Epov, M.I.: Locally nonlinear approximation of high-frequency electromagnetic field for logging applications. Russ. Geol. Geophys. 47(8), 930–936 (2006)Google Scholar
  15. 15.
    Glinskikh, V.N., Nikitenko, M.N., Epov, M.I.: Numerical modeling and inversion of electromagnetic logs in the wells drilled with biopolymer and oil-mud. Russ. Geol. Geophys. 54(11), 1409–1416 (2013)CrossRefGoogle Scholar
  16. 16.
    Glinskikh, V.N., Nikitenko, M.N., Epov, M.I.: Processing high-frequency electromagnetic logs from conducting formations: linearized 2D forward and inverse solutions with regard to eddy currents. Russ. Geol. Geophys. 54(12), 1515–1521 (2013)CrossRefGoogle Scholar
  17. 17.
    Shaidurov, V.V.: Multigrid Methods for Finite Elements. Nauka, Moscow (1989). 288 p. (In Russian)Google Scholar
  18. 18.
    CUDA C Programming Guide. Design Guide. NVIDIA CUDA. http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
  19. 19.
  20. 20.
    Chen, Y., Davis, T.A., Hager, W.W., Rajamanickam, S.: Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35(3), 22:1–22:14 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Davis, T.A.: SuiteSparse: a suite of sparse matrix software. http://www.suitesparse.com

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations