Skip to main content

Quantum-Dot Mode-Locked Lasers: Sources for Tunable Optical and Electrical Pulse Combs

  • Chapter
  • First Online:

Part of the book series: NanoScience and Technology ((NANO))

Abstract

In this chapter optical and electrical properties of quantum-dot mode-locked semiconductor lasers as well as applications based on these devices are discussed. Section 4.1 gives a short overview of different pulse generation and mode-locking techniques, with the main focus on passive mode locking, as well as details on the laser design and advanced features of quantum-dot devices. Timing-jitter reduction and frequency-tuning techniques (hybrid mode locking, optical injection and optical self-feedback) are compared in Sect. 4.2. Section 4.3 is devoted to applications of mode-locked lasers in photonic terahertz signal generation and optical data communication systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H.F. Liu, M. Fukazawa, Y. Kawai, T. Kamiya, Gain-switched picosecond pulse (<10 ps) generation from 1.3 µm InGaAsP laser-diodes. IEEE J. Quantum Electron. 25, 1417–1425 (1989)

    Article  Google Scholar 

  2. P.P. Vasilev, Ultrashort pulse generation in diode-lasers. Opt. Quant. Electron. 24, 801–824 (1992)

    Article  Google Scholar 

  3. F. Van Dijk, B. Charbonnier, S. Constant, A. Enard, S. Fedderwitz, S. Formont, et al., Quantum dash mode-locked lasers for millimeter wave signal generation and transmission, in Annual Meeting of the IEEE Photonics Society, Denver, CO, 2010, pp. 187–188

    Google Scholar 

  4. A. Stohr, S. Babiel, P.J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz et al., Millimeter-wave photonic components for broadband wireless systems. IEEE Trans. Microw. Theory Tech. 58, 3071–3082 (2010)

    Article  Google Scholar 

  5. W.H. Knox, Ultrafast technology in telecommunications. IEEE J. Sel. Top. Quantum Electron. 6, 1273–1278 (2000)

    Google Scholar 

  6. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber et al., 26 Tbit/s line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. Nat. Photonics 5, 364–371 (2011)

    Article  Google Scholar 

  7. C. Dorrer, High-speed measurements for optical telecommunication systems. IEEE J. Sel. Top. Quantum Electron. 12, 843–858 (2006)

    Article  Google Scholar 

  8. X. Huang, A. Stintz, H. Li, L.F. Lester, J. Cheng, K.J. Malloy, Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers. Appl. Phys. Lett. 78, 2825 (2001)

    Article  Google Scholar 

  9. A. Gubenko, D. Livshits, I. Krestnikov, S. Mikhrin, A. Kozhukhov, A. Kovsh et al., High-power monolithic passively modelocked quantum-dot laser. Electron. Lett. 41, 1124 (2005)

    Article  Google Scholar 

  10. M. Laemmlin, G. Fiol, C. Meuer, M. Kuntz, F. Hopfer, A.R. Kovsh et al., Distortion-free optical amplification of 20–80 GHz modelocked laser pulses at 1.3 [micro sign]m using quantum dots. Electron. Lett. 42, 697 (2006)

    Article  Google Scholar 

  11. D. Bimberg, Quantum dot based nanophotonics and nanoelectronics. Electron. Lett. 44, 168–170 (2008)

    Article  Google Scholar 

  12. R.L. Sellin, C. Ribbat, M. Grundmann, N.N. Ledentsov, D. Bimberg, Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers. Appl. Phys. Lett. 78, 1207 (2001)

    Article  Google Scholar 

  13. O.B. Shchekin, D.G. Deppe, 1.3 mu m InAs quantum dot laser with T-o = 161 K from 0 to 80 degrees C. Appl. Phys. Lett. 80, 3277–3279 (2002)

    Article  Google Scholar 

  14. D.B. Malins, A. Gomez-Iglesias, S.J. White, W. Sibbett, A. Miller, E.U. Rafailov, Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm. Appl. Phys. Lett. 89, 171111 (2006)

    Article  Google Scholar 

  15. J. Gomis-Bresco, S. Dommers-Volkel, O. Schops, Y. Kaptan, O. Dyatlova, D. Bimberg, et al., Time-resolved amplified spontaneous emission in quantum dots. Appl. Phys. Lett. 97 (2010)

    Google Scholar 

  16. D.G. Deppe, H. Huang, O.B. Shchekin, Modulation characteristics of quantum-dot lasers: the influence of p-type doping and the electronic density of states on obtaining high speed. IEEE J. Quantum Electron. 38, 1587–1593 (2002)

    Article  Google Scholar 

  17. A.R. Kovsh, N.A. Maleev, A.E. Zhukov, S.S. Mikhrin, A.P. Vasil’ev, E.A. Semenova, et al., InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain. J. Cryst. Growth 251, 729–736 (2003)

    Google Scholar 

  18. G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijević, S. Liebich, M. Laemmlin, et al., Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz. IEEE J. Quantum Electron. 45, 1429–1435 (2009)

    Google Scholar 

  19. J.K. Mee, R. Raghunathan, J.B. Wright, L.F. Lester, Device geometry considerations for ridge waveguide quantum dot mode-locked lasers. J. Phys. D Appl. Phys. 47, 233001 (2014)

    Article  Google Scholar 

  20. E. Rouvalis, D. Arsenijević, M. Spiegelberg, T. Sadeev, R. Ziegler, A.G. Steffan, et al., 40 GHz quantum quantum-dot mode-locked laser packaged module operating at 1310 nm, in Asia Communications and Photonics Conference (ACP), Shanghai, China, 2014, pp. 1–3

    Google Scholar 

  21. H.A. Haus, Theory of mode locking with a slow saturable absorber. IEEE J. Quantum Electron. 11, 736–746 (1975)

    Google Scholar 

  22. D.J. Derickson, R.J. Helkey, A. Mar, J.R. Karin, J.G. Wasserbauer, J.E. Bowers, Short pulse generation using multisegment mode-locked semiconductor-lasers. IEEE J. Quantum Electron. 28, 2186–2202 (1992)

    Article  Google Scholar 

  23. M.G. Thompson, A.R. Rae, X. Mo, R.V. Penty, I.H. White, InGaAs quantum-dot mode-locked laser diodes. IEEE J. Sel. Top. Quantum Electron. 15, 661–672 (2009)

    Article  Google Scholar 

  24. E.A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A.G. Vladimirov et al., Stability of the mode-locked regime in quantum dot lasers. Appl. Phys. Lett. 91, 231116 (2007)

    Article  Google Scholar 

  25. A.G. Vladimirov, U. Bandelow, G. Fiol, D. Arsenijević, M. Kleinert, D. Bimberg, et al., Dynamical regimes in a monolithic passively mode-locked quantum dot laser, J. Opt. Soc. Am. B-Opt. Phys. 27, 2102–2109 (2010)

    Google Scholar 

  26. M.G. Thompson, A. Rae, R.L. Sellin, C. Marinelli, R.V. Penty, I.H. White et al., Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers. Appl. Phys. Lett. 88, 133119 (2006)

    Article  Google Scholar 

  27. X.D. Huang, A. Stintz, H. Li, A. Rice, G.T. Liu, L.F. Lester et al., Bistable operation of a two-section 1.3-mu m InAs quantum dot laser—absorption saturation and the quantum confined Stark effect. IEEE J. Quantum Electron. 37, 414–417 (2001)

    Article  Google Scholar 

  28. M.G. Thompson, K.T. Tan, C. Marinelli, K.A. Williams, R.V. Penty, I.H. White et al., Transform-limited optical pulses from 18 GHz monolithic modelocked quantum dot lasers operating at ∼1.3 [micro sign]m. Electron. Lett. 40, 346 (2004)

    Article  Google Scholar 

  29. M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M.G. Thompson, K.T. Tan et al., Direct modulation and mode locking of 1.3 μm quantum dot lasers. New J. Phys. 6, 181 (2004)

    Article  Google Scholar 

  30. H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, D. Bimberg, Complete pulse characterization of quantum-dot mode-locked lasers suitable for optical communication up to 160 Gbit/s. Opt. Express 18, 3415–3425 (2010)

    Google Scholar 

  31. D. von der Linde, Characterization of the noise in continuously operating mode-locked lasers. Appl. Phys. B 39, 201–217 (1986)

    Article  Google Scholar 

  32. ITU, The control of jitter and wander within the optical transport network (OTN)—recommendation G.8251, in Series G: Transmission Systems and Media, Digital Systems and Networks, ITU-T (2010)

    Google Scholar 

  33. D. Eliyahu, R.A. Salvatore, A. Yariv, Noise characterization of a pulse train generated by actively mode-locked lasers. J. Opt. Soc. Am. B-Opt. Phys. 13, 1619–1626 (1996)

    Article  Google Scholar 

  34. H.A. Haus, A. Mecozzi, Noise of mode-locked lasers. IEEE J. Quantum Electron. 29, 983–996 (1993)

    Google Scholar 

  35. D. Eliyahu, R.A. Salvatore, A. Yariv, Effect of noise on the power spectrum of passively mode-locked lasers. J. Opt. Soc. Am. B-Opt. Phys. 14, 167–174 (1997)

    Article  Google Scholar 

  36. F. Kefelian, S. O’Donoghue, M.T. Todaro, J.G. McInerney, G. Huyet, RF linewidth in monolithic passively mode-locked semiconductor laser. IEEE Photonics Technol. Lett. 20, 1405–1407 (2008)

    Article  Google Scholar 

  37. L.A. Jiang, S.T. Wong, M.E. Grein, E.P. Ippen, H.A. Haus, Measuring timing jitter with optical cross correlations. IEEE J. Quantum Electron. 38, 1047–1052 (2002)

    Google Scholar 

  38. M.G. Thompson, C. Marinelli, K.T. Tan, K. A. Williams, R.V. Penty, I.H. White, et al., 10 GHz hybrid modelocking of monolithic InGaAs quantum dot lasers. Electron. Lett. 39, 1121–1122 (2003)

    Google Scholar 

  39. M. Kuntz, G. Fiol, M. Laemmlin, C. Meuer, D. Bimberg, High-speed mode-locked quantum-dot lasers and optical amplifiers. Proc. IEEE 95, 1767–1778 (2007)

    Article  Google Scholar 

  40. B. Huettl, R. Kaiser, Monolithically integrated optical pulse sources for ultra-high speed applications, in URSI General Assemblies, New Delhi, India, 2005

    Google Scholar 

  41. R. Kaiser, B. Hüttl, W. Rehbein, H. Stolpe, H. Heidrich, S. Fidorra, et al., Repetition rate and wavelength tuning of monolithic 40 GHz mode-locked lasers based on InP, in Conference on Indium Phosphide and Related Materials, Santa Barbara, CA, 2003, pp. 255–258

    Google Scholar 

  42. M.G. Thompson, D. Larson, A.R. Rae, K. Yvind, R.V. Penty, I.H. White, et al., Monolithic hybrid and passive mode-locked 40 GHz quantum dot laser diodes, in European Conference on Optical Communication (ECOC), Cannes, France, 2006, pp. 1–2

    Google Scholar 

  43. K. Yvind, P.M. Smowton, D. Larsson, J. Mørk, J.M. Hvam, M. Thompson, et al., Low-noise monolithic mode-locked semiconductor lasers through low-dimensional structures, in SPIE Photonics West, San Jose, CA, 2008, pp. 69090A-1–69090A-9

    Google Scholar 

  44. G. Fiol, D. Arsenijević, D. Bimberg, A.G. Vladimirov, M. Wolfrum, E.A. Viktorov, et al., Hybrid mode-locking in a 40 GHz monolithic quantum dot laser. Appl. Phys. Lett. 96, 011104–011104-3 (2010)

    Google Scholar 

  45. A.G. Vladimirov, M. Wolfrum, G. Fiol, D. Arsenijević, D. Bimberg, E. Viktorov, et al., Locking characteristics of a 40-GHz hybrid mode-locked monolithic quantum dot laser, in SPIE Photonics Europe, Brussels, Belgium, 2010, pp. 77200Y-77200Y-8

    Google Scholar 

  46. H.A. Haus, Modelocking of semiconductor-laser diodes. Jpn. J. Appl. Phys. 20, 1007–1020 (1981)

    Article  Google Scholar 

  47. B. Hüttl, R. Kaiser, C. Kindel, S. Fidorra, W. Rehbein, H. Stolpe et al., Experimental investigations on the suppression of Q switching in monolithic 40 GHz mode-locked semiconductor lasers. Appl. Phys. Lett. 88, 221104 (2006)

    Article  Google Scholar 

  48. A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Wiley, New York, NY, 1979)

    MATH  Google Scholar 

  49. R. Arkhipov, A. Pimenov, M. Radziunas, D. Rachinskii, A.G. Vladimirov, D. Arsenijević, et al., Hybrid mode locking in semiconductor lasers: simulations, analysis, and experiments. IEEE J. Sel. Top. Quantum Electron. 19, 1100208–1100208-8 (2013)

    Google Scholar 

  50. V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd edn. (Springer-Verlag, New York, NY, 1988)

    Book  Google Scholar 

  51. D. Arsenijević, M. Kleinert, M. Spiegelberg, M. Stubenrauch, D. Bimberg, 1.31 μm quantum-dot hybrid mode-locked lasers for optical time-division multiplexing, in International Conference on Transparent Optical Networks (ICTON), Budapest, Hungary, 2015, pp. 1–4

    Google Scholar 

  52. W. Freude, J. Pfeifle, R. Watts, I. Shkarban, S. Wolf, V. Vujicic, et al., Phase-noise compensated carriers from an optical frequency comb allowing terabit transmission, in International Conference on Transparent Optical Networks (ICTON), Budapest, Hungary, 2015, pp. 1–4

    Google Scholar 

  53. A. Takada, W. Imajuku, Linewidth narrowing and optical phase control of mode-locked semiconductor ring laser employing optical injection locking. IEEE Photonics Technol. Lett. 9, 1328–1330 (1997)

    Article  Google Scholar 

  54. M. Teshima, K. Sato, M. Koga, Experimental investigation of injection locking of fundamental and subharmonic frequency-modulated active mode-locked laser diodes. IEEE J. Quantum Electron. 34, 1588–1596 (1998)

    Article  Google Scholar 

  55. J. Kim, P.J. Delfyett, Interband optical pulse injection locking of quantum dot mode-locked semiconductor laser. Opt. Express 16, 11153–11161 (2008)

    Article  Google Scholar 

  56. T. Habruseva, G. Huyet, and S.P. Hegarty, Dynamics of quantum-dot mode-locked lasers with optical injection. IEEE J. Sel. Top. Quantum Electron. 17, 1272–1279 (2011)

    Google Scholar 

  57. G. Fiol, M. Kleinert, D. Arsenijević, D. Bimberg, 1.3 µm range 40 GHz quantum-dot mode-locked laser under external continuous wave light injection or optical feedback. Semicond. Sci. Technol. 26, 014006–014006-5 15 (2011)

    Google Scholar 

  58. L. Goldberg, H.F. Taylor, J.F. Weller, Fm sideband injection locking of diode-lasers. Electron. Lett. 18, 1019–1020 (1982)

    Article  Google Scholar 

  59. T. Habruseva, S. O’Donoghue, N. Rebrova, D.A. Reid, L.P. Barry, D. Rachinskii et al., Quantum-dot mode-locked lasers with dual-mode optical injection. IEEE Photonics Technol. Lett. 22, 359–361 (2010)

    Article  Google Scholar 

  60. T. Habruseva, D. Arsenijević, M. Kleinert, D. Bimberg, G. Huyet, S.P. Hegarty, Optimum phase noise reduction and repetition rate tuning in quantum-dot mode-locked lasers. Appl. Phys. Lett. 104, 021112–021112-4 (2014)

    Google Scholar 

  61. R. Tkach, A. Chraplyvy, Regimes of feedback effects in 1.5-µm distributed feedback lasers. J. Lightw. Technol. 4, 1655–1661 (1986)

    Google Scholar 

  62. C. Otto, K. Lüdge, A.G. Vladimirov, M. Wolfrum, E. Schöll, Delay-induced dynamics and jitter reduction of passively mode-locked semiconductor lasers subject to optical feedback. New J. Phys. 14, 113033 (2012)

    Article  Google Scholar 

  63. C.Y. Lin, F. Grillot, N.A. Naderi, Y. Li, L.F. Lester, rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback. Appl. Phys. Lett. 96, 051118 (2010)

    Article  Google Scholar 

  64. A. Akrout, A. Shen, A. Enard, G.H. Duan, F. Lelarge, A. Ramdane, Low phase noise all-optical oscillator using quantum dash modelocked laser. Electron. Lett. 46, 73 (2010)

    Article  Google Scholar 

  65. E.A. Avrutin, S. Xibin, B.M. Russell, Optical feedback tolerance of mode-locked laser diodes and some feedback reduction methods: a numerical investigation. Opt. Quant. Electron. 40, 1175–1180 (2008)

    Article  Google Scholar 

  66. D. Arsenijević, M. Kleinert, D. Bimberg, Phase noise and jitter reduction by optical feedback on passively mode-locked quantum-dot lasers. Appl. Phys. Lett. 103, 231101–231101-4 (2013)

    Google Scholar 

  67. D. Arsenijević, M. Kleinert, D. Bimberg, Breakthroughs in photonics 2013: passive mode-locking of quantum-dot lasers. IEEE Photonics J. 6, 0700306–0700306-6 (2014)

    Google Scholar 

  68. C. Simos, H. Simos, T. Nikas, D. Syvridis, Compact optical displacement sensing by detection of microwave signals generated from a monolithic passively mode-locked laser under feedback, vol. 9506, (2015), p. 95060F

    Google Scholar 

  69. X.Q. Qi, J.M. Liu, Photonic microwave applications of the dynamics of semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011)

    Google Scholar 

  70. E.H. Bottcher, E. Droge, D. Bimberg, 200 GHz distributed InGaAs metal-semiconductor-metal photodetectors for the long-wavelength regime, in International Symposium on Compound Semiconductors, St. Petersburg, Russia, 1997, pp. 55–60

    Google Scholar 

  71. H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi, High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes. IEEE J. Sel. Top. Quantum Electron. 10, 709–727 (2004)

    Google Scholar 

  72. H. Ito, T. Furuta, S. Kodama, T. Ishibashi, InP/lnGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth. Electron. Lett. 36, 1809–1810 (2000)

    Article  Google Scholar 

  73. M.J. Fice, E. Rouvalis, L. Ponnampalam, C.C. Renaud, A.J. Seeds, Telecommunications technology-based terahertz sources. Electron. Lett. 46, S28–S31 (2010)

    Article  Google Scholar 

  74. S. Osborne, S. O’Brien, E.P. O’Reilly, P.G. Huggard, B.N. Ellison, Generation of CW 0.5 THz radiation by photomixing the output of a two-colour 1.49 mu m Fabry-Perot diode laser. Electron. Lett. 44, 296–298 (2008)

    Article  Google Scholar 

  75. S.C. Chan, Analysis of an optically injected semiconductor laser for microwave generation. IEEE J. Quantum Electron. 46, 421–428 (2010)

    Article  Google Scholar 

  76. A. Hurtado, J. Mee, M. Nami, I.D. Henning, M.J. Adams, L.F. Lester, Tunable microwave signal generator with an optically-injected 1310 nm QD-DFB laser. Opt. Express 21, 10772–10778 (2013)

    Article  Google Scholar 

  77. L.A. Johansson, A.J. Seeds, Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lock loop. IEEE Photonics Technol. Lett. 12, 690–692 (2000)

    Article  Google Scholar 

  78. D. Novak, Z. Ahmed, R.B. Waterhouse, R.S. Tucker, Signal generation using pulsed semiconductor-lasers for application in millimeter-wave wireless links. IEEE Trans. Microw. Theory Tech. 43, 2257–2262 (1995)

    Article  Google Scholar 

  79. D.J. Derickson, R.J. Helkey, A. Mar, J.G. Wasserbauer, Y.G. Wey, J.E. Bowers, Microwave and millimeter wave signal generation using mode-locked semiconductor lasers with intra-waveguide saturable absorbers, in IEEE MTT-S International Microwave Symposium Digest, Albuquerque, NM, 1992, pp. 753–756

    Google Scholar 

  80. C.Y. Lin, Y.C. Xin, J.H. Kim, C.G. Christodoulou, L.F. Lester, Compact optical generation of microwave signals using a monolithic quantum dot passively mode-locked laser. IEEE Photonics J. 1, 236–244 (2009)

    Article  Google Scholar 

  81. IEEE, IEEE Standard for Letter Designations for Radar-Frequency Bands—IEEE Std 521 (2002)

    Google Scholar 

  82. ITU, Nomenclature of the Frequency and Wavelength Bands used in Telecommunications—Recommendation ITU-R V.431–7, ITU-T (2000)

    Google Scholar 

  83. D. Arsenijević, M. Kleinert, D. Bimberg, Optoelectronic Oscillator, Germany Patent PCT/DE 2014/200257, WO 2014/202074, US 2016/0149377, 2014

    Google Scholar 

  84. P.J. Winzer, R.J. Essiambre, Advanced optical modulation formats. Proc. IEEE 94, 952–985 (2006)

    Article  Google Scholar 

  85. H. Kim, A.H. Gnauck, Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio. IEEE Photonics Technol. Lett. 14, 298–300 (2002)

    Article  Google Scholar 

  86. N.M. Froberg, G. Raybon, U. Koren, B.I. Miller, M.G. Young, M. Chien et al., Generation of 12.5-Gbit/s soliton data stream with an integrated laser-modulator transmitter. Electron. Lett. 30, 1880–1881 (1994)

    Article  Google Scholar 

  87. X. Liu, Y. Kao, Generation of RZ-DPSK using a single mach-zehnder modulator and novel driver electronics, in European Conference on Optical Communication (ECOC), Stockholm, Sweden, 2004, pp. 1–2

    Google Scholar 

  88. J. Leibrich, C. Wree, W. Rosenkranz, CF-RZ-DPSK for suppression of XPM on dispersion-managed long-haul optical WDM transmission on standard single-mode fiber. IEEE Photonics Technol. Lett. 14, 155–157 (2002)

    Article  Google Scholar 

  89. T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, J.K. Fischer, et al., Single wavelength channel 10.2 Tb/s TDM-Data capacity using 16-QAM and coherent detection, in Optical Fiber Communication Conference and Exposition (OFC), National Fiber Optic Engineers Conference (NFOEC), Los Angeles, CA, 2011, pp. 1–3

    Google Scholar 

  90. L. Boivin, G.J. Pendock, Receiver sensitivity for optically amplified RZ signals with arbitrary duty circle, in Optical Amplifiers and Their Applications (OAA), Nara, Japan, 1999

    Google Scholar 

  91. W. Idler, A. Klekamp, R. Dischler, J. Lazaro, A. Konczykowska, System performance and tolerances of 43 Gb/s ASK and DPSK modulation formats, in European Conference on Optical Communication (ECOC), Rimini, Italy, 2003, pp. 1006–1007

    Google Scholar 

  92. A.H. Gnauck, P.J. Winzer, Optical phase-shift-keyed transmission. J. Lightwave Technol. 23, 115–130 (2005)

    Article  Google Scholar 

  93. J.G. Proakis, Digital Communications (McGraw-Hill, Boston, 2001)

    MATH  Google Scholar 

  94. R.A. Griffin, A.C. Carter, Optical differential quadrature phase-shift key (oDQPSK) for high capacity optical transmission, in Optical Fiber Communication Conference (OFC), Anaheim, CA, 2002, pp. 367–368

    Google Scholar 

  95. N.S. Avlonitis, E.M. Yeatman, Performance evaluation of optical DQPSK using saddle point approximation. J. Lightwave Technol. 24, 1176–1185 (2006)

    Article  Google Scholar 

  96. D. Arsenijević, D. Bimberg, Quantum-dot lasers for 35 Gbit/s pulse-amplitude modulation and 160 Gbit/s differential quadrature phase-shift keying, in SPIE Photonics Europe, Brussels, Belgium, 2016, pp. 98920S–98920S-10

    Google Scholar 

  97. D. Arsenijević, H. Schmeckebier, M. Kleinert, E. Rouvalis, R. Ziegler, A.G. Steffan, et al., Quantum-dot mode-locked lasers for microwave-signal generation and 160 Gbps optical communication, in IEEE Photonics Conference (IPC), Reston, VA, 2015

    Google Scholar 

Download references

Acknowledgements

Many colleagues contributed to the success of this work. The authors would like to thank expressly for each individual who has been in recent years with us and especially Moritz Kleinert and Marc Spiegelberg for their untiring efforts. The work was funded by DFG in the framework of the SFB 787.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejan Arsenijević .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arsenijević, D., Bimberg, D. (2017). Quantum-Dot Mode-Locked Lasers: Sources for Tunable Optical and Electrical Pulse Combs. In: Eisenstein, G., Bimberg, D. (eds) Green Photonics and Electronics. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-67002-7_4

Download citation

Publish with us

Policies and ethics