Skip to main content

High-Speed InP-Based Long-Wavelength VCSELs

  • Chapter
  • First Online:
Green Photonics and Electronics

Part of the book series: NanoScience and Technology ((NANO))

Abstract

The rapid growth of internet and cloud computing applications drives a huge demand for bandwidth capacity in communication networks, while power consumption, cost, and space density must scale down. This growth leads to an increase in the size of data centers (longer optical links), and of the fibers’ channel data rate, rooted in Moore’s Law. Until now, multi-mode fibers (MMF) have been largely employed in datacom applications due to the large coupling tolerance. However, the data-carrying capability of MMF decreases with the transmission distance due to pulse broadening resulting from modal and chromatic dispersion. In order to overcome those limits, transceivers based on single mode fiber (SMF) are under development and the first systems are on the market. Vertical-cavity surface-emitting lasers (VCSELs) are the transmitters of choice for short-reach applications due to their low cost, energy efficiency , and small footprint. InP-based VCSELs emitting at long wavelengths (i.e. 1.3 and 1.55 µm) have gained large interest due to their intrinsic lower power consumption (lower band gap) and low losses in silicon waveguides and silica-based optical fibers, which allows longer transmission distances. While short-wavelength GaAs-based VCSELs have achieved small-signal modulation bandwidths up to 30 GHz [1], InP-based VCSELs show inferior modulation capabilities [2, 3]. Up to date, the highest small-signal bandwidth demonstrated on InP-based devices is 22 GHz [3]. The distributed Bragg reflectors (DBRs) commonly used for GaAs-based VCSELs are made of binary and ternary semiconductor compounds, which offer several advantages such as high refractive-index contrast between the layers, good electrical conductivity and low thermal resistivity. The inferiority of semiconductor DBRs lattice matched to InP challenges the modulation bandwidth enhancement of InP-based devices which suffer of poor thermal conductivity, and high lateral spreading resistance. A further challenge is the single-mode laser operation that has motivated the transition from MMF to SMF in datacom systems. In this chapter, the challenges related to InP-based VCSELs are discussed with focus on active region design, cavity engineering, and current and optical confinement. These arguments apply to all InP-based VCSELs with emission wavelength between 1.3 and 2.0 µm. Stationary and dynamic characteristics are presented for a 1.55 µm VCSEL. Finally, datacom and telecom transmission experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Haglund, P. Westbergh, J.S. Gustavsson, E.P. Haglund, A. Larsson, M. Geen, A. Joel, 30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s. Electron. Lett. 51(14), 1096–1098 (2015)

    Article  Google Scholar 

  2. M. Müller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R.D. Nagel, E. Ronneberg, G. Böhm, D. Bimberg, M.-C. Amann, 1550-nm high-speed short-cavity VCSELs. IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1166 (2011). doi:10.1109/JSTQE.2011.2109700

    Article  Google Scholar 

  3. S. Spiga, D. Schoke, A. Andrejew, M. Müller, G. Boehm, M.-C. Amann, Single-Mode 1.5-µm VCSELs with 22-GHz small-signal bandwidth, in Optical Fiber Communication Conference, Anaheim, California, 20 Mar 2016. OSA Technical Digest (online) (Optical Society of America, 2016), p. Tu3D.4. doi:10.1364/OFC.2016.Tu3D.4

  4. P. Sundgren, R. Marcks von Wurtemberg, J. Berggren, M. Hammar, M. Ghisoni, V. Oscarsson, E. Odling, J. Malmquist, High-performance 1.3 µm InGaAs vertical cavity surface emitting lasers. Electron. Lett. 39(15), 1128–1129 (2003). doi:10.1049/el:20030733

    Article  Google Scholar 

  5. H. Riechert, A. Ramakrishnan, G. Steinle, Development of InGaAsN-based 1.3 μm VCSELs. Semicond. Sci. Technol. 17(8), 892 (2002)

    Article  Google Scholar 

  6. J.A. Lott, N.N. Ledentsov, V.M. Ustinov, N.A. Maleev, A.E. Zhukov, A.R. Kovsh, M.V. Maximov, B.V. Volovik, Z.I. Alferov, D. Bimberg, InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 µm. Electron. Lett. 36(16), 1384–1385 (2000). doi:10.1049/el:20000988

    Article  Google Scholar 

  7. Y. Arakawa, A. Yariv, Theory of gain, modulation response, and spectral linewidth in AlGaAs quantum well lasers. IEEE J. Quantum Electron. 21(10), 1666–1674 (1985). doi:10.1109/JQE.1985.1072555

    Article  Google Scholar 

  8. I. Suemune, Theoretical study of differential gain in strained quantum well structures. IEEE J. Quantum Electron. 27(5), 1149–1159 (1991). doi:10.1109/3.83371

    Article  Google Scholar 

  9. A.R. Adams, Strained-layer quantum-well lasers. IEEE J. Sel. Top. Quantum Electron. 17(5), 1364–1373 (2011). doi:10.1109/JSTQE.2011.2108995

    Article  Google Scholar 

  10. G. Böhm, R. Shau, R. Meyer, M.C. Amann, M. Ortsiefer, J. Rosskopf, F. Mederer, InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0 µm. Paper presented at the 2002 International Conference on Molecular Beam Epitaxy, 15–20 Sept 2002

    Google Scholar 

  11. B. Zhao, T.R. Chen, A. Yariv, The extra differential gain enhancement in multiple-quantum-well lasers. IEEE Photonics Technol. Lett. 4(2), 124–126 (1992). doi:10.1109/68.122336

    Article  Google Scholar 

  12. M. Gendry, V. Drouot, C. Santinelli, G. Hollinger, Critical thicknesses of highly strained InGaAs layers grown on InP by molecular beam epitaxy. Appl. Phys. Lett. 60(18), 2249–2251 (1992). doi:10.1063/1.107045

    Article  Google Scholar 

  13. D. Ellafi, V. Iakovlev, A. Sirbu, S. Grigore, Z. Mickovic, A. Caliman, A. Mereuta, E. Kapon, Effect of cavity lifetime variation on the static and dynamic properties of 1.3-µm wafer-fused VCSELs. IEEE J. Sel. Top. Quantum Electron. 21(6), 1–9 (2015). doi:10.1109/JSTQE.2015.2412495

  14. P. Westbergh, J.S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, Impact of photon lifetime on high-speed VCSEL performance. IEEE J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011). doi:10.1109/JSTQE.2011.2114642

    Article  Google Scholar 

  15. K.Y. Lau, A. Yariv, Ultra-high speed semiconductor lasers. IEEE J. Quantum Electron. 21(2), 121–138 (1985). doi:10.1109/JQE.1985.1072624

    Article  Google Scholar 

  16. D.I. Babic, S.W. Corzine, Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors. IEEE J. Quantum Electron. 28(2), 514–524 (1992). doi:10.1109/3.123281

    Article  Google Scholar 

  17. S. Nakagawa, E. Hall, G. Almuneau, J.K. Kim, D.A. Buell, H. Kroemer, L.A. Coldren, 1.55-µm InP-lattice-matched VCSELs with AlGaAsSb-AlAsSb DBRs. IEEE J. Sel. Top. Quantum Electron. 7(2), 224–230 (2001). doi:10.1109/2944.954134

  18. L. Chao-Kun, D.P. Bour, Z. Jintian, W.H. Perez, M.H. Leary, A. Tandon, S.W. Corzine, M.R.T. Tan, High temperature continuous-wave operation of 1.3- and 1.55-µm VCSELs with InP/air-gap DBRs. IEEE J. Sel. Top. Quantum Electron. 9(5), 1415–1421 (2003). doi:10.1109/JSTQE.2003.820924

  19. A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, E. Kapon, 1.5-mW single-mode operation of wafer-fused 1550-nm VCSELs. IEEE Photonics Technol. Lett. 16(5), 1230–1232 (2004). doi:10.1109/LPT.2004.826099

  20. R. Yi, Y. Weijian, C. Chase, M.C.Y. Huang, D.D.P. Worland, S. Khaleghi, M.R. Chitgarha, M. Ziyadi, A.E. Willner, C.J. Chang-Hasnain, Long-wavelength VCSEL using high-contrast grating. IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311–1701311 (2013). doi:10.1109/JSTQE.2013.2246780

    Article  Google Scholar 

  21. K.D. Choquette, K.M. Geib, H.C. Chui, H.Q. Hou, R. Hull, Selective oxidation of buried AlGaAs for fabrication of vertical-cavity lasers. MRS Online Proc. Libr. Arch. 421, 53 (1996). doi:10.1557/PROC-421-53

    Article  Google Scholar 

  22. K.D. Choquette, R.P. Schneider Jr., K.L. Lear, K.M. Geib, Low threshold voltage vertical-cavity lasers fabricated by selective oxidation. Electron. Lett. 30(24), 2043–2044 (1994). doi:10.1049/el:19941421

    Article  Google Scholar 

  23. P. Petit, P. Legay, G. Le Roux, G. Patriarche, G. Post, M. Quillec, Controlled steam oxidation of AlInAs for microelectronics and optoelectronics applications. J. Electron. Mater. 26(12), L32–L35 (1997). doi:10.1007/s11664-997-0065-0

    Article  Google Scholar 

  24. C.W. Wilmsen, H. Temkin, Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications, vol. 24 (Cambridge University Press, 2001)

    Google Scholar 

  25. M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, G. Abstreiter, M. Christian-Amann, Low-resistance InGa(Al)As tunnel junctions for long wavelength vertical-cavity Surface-emitting Lasers. Jpn. J. Appl. Phys. 39(4R), 1727 (2000)

    Article  Google Scholar 

  26. G. Hadley, K. Lear, M. Warren, K. Choquette, J. Scott, S. Corzine, Comprehensive numerical modeling of vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 32(4), 607–616 (1996)

    Article  Google Scholar 

  27. L.A. Coldren, S.W. Corzine, M.L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, vol. 218 (Wiley, 2012)

    Google Scholar 

  28. R. Burton, M. Stern, P. Kendall, P. Robson, Modelling of diffraction in pillar vertical cavity surface-emitting lasers with embedded Bragg layers. Opt. Quant. Electron. 28(11), 1677–1684 (1996)

    Article  Google Scholar 

  29. R.S. Tucker, High-speed modulation of semiconductor lasers. IEEE Trans. Electron Devices 32(12), 2572–2584 (1985)

    Article  Google Scholar 

  30. M.C. Amann, E. Wong, M. Müller, Energy-efficient high-speed short-cavity VCSELs. Paper presented at the Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference, 4–8 Mar 2012

    Google Scholar 

  31. W. Soenen, R. Vaernewyck, Y. Xin, S. Spiga, M.C. Amann, K.S. Kaur, P. Bakopoulos, J. Bauwelinck, 40 Gb/s PAM-4 transmitter IC for long-wavelength VCSEL links. IEEE Photonics Technol. Lett. 27(4), 344–347 (2015). doi:10.1109/LPT.2014.2372041

    Article  Google Scholar 

  32. C. Xie, S. Spiga, P. Dong, P. Winzer, M. Bergmann, B. Kögel, C. Neumeyr, M.C. Amann, 400-Gb/s PDM-4PAM WDM system using a monolithic 2 × 4 VCSEL array and coherent detection. J. Lightwave Technol. 33(3), 670–677 (2015). doi:10.1109/JLT.2014.2363017

    Article  Google Scholar 

  33. C. Xie, P. Dong, P. Winzer, C. Gréus, M. Ortsiefer, C. Neumeyr, S. Spiga, M. Müller, M.C. Amann, 960-km SSMF transmission of 105.7-Gb/s PDM 3-PAM using directly modulated VCSELs and coherent detection. Opt. Express 21(9), 11585–11589 (2013). doi:10.1364/OE.21.011585

    Article  Google Scholar 

  34. D.M. Kuchta, F.E. Doany, L. Schares, C. Neumeyr, A. Daly, B. Kögel, J. Rosskopf, M. Ortsiefer, Error-free 56 Gb/s NRZ modulation of a 1530 nm VCSEL link, in 2015 European Conference on Optical Communication (ECOC), 27 Sept 2015–1 Oct 2015, pp. 1–3. doi:10.1109/ECOC.2015.7341677

  35. C. Xie, P. Dong, S. Randel, D. Pilori, P.J. Winzer, S. Spiga, B. Kögel, C. Neumeyr, M. Amann, Single-VCSEL 100-Gb/s short-reach system using discrete multi-tone modulation and direct detection, in Optical Fiber Communication Conference, Los Angeles, California, 22 Mar 2015. OSA Technical Digest (online) (Optical Society of America, 2015), p. Tu2H.2. doi:10.1364/OFC.2015.Tu2H.2

  36. A. Vahdat, H. Liu, X. Zhao, C. Johnson, The emerging optical data center, in Optical Fiber Communication Conference (Optical Society of America, 2011), p. OTuH2

    Google Scholar 

  37. D. Apostolopoulos, P. Bakopoulos, D. Kalavrouziotis, G. Giannoulis, G. Kanakis, N. Iliadis, C. Spatharakis, J. Bauwelinck, H. Avramopoulos, Photonic integration enabling new multiplexing concepts in optical board-to-board and rack-to-rack interconnects, in SPIE OPTO (International Society for Optics and Photonics, 2014), pp. 89910D-89910D-89915

    Google Scholar 

  38. L.G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, S.-W. Wong, Next-generation optical access networks. J. Lightwave Technol. 25(11), 3428–3442 (2007)

    Article  Google Scholar 

  39. M.H. Eiselt, B.T. Teipen, Requirements for 100 Gb/s Metro Networks. Paper presented at the Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, San Diego, California, 22 Mar 2009

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the European Commission through the FP7 project MIRAGE (ref. 318228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus C. Amann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spiga, S., Amann, M.C. (2017). High-Speed InP-Based Long-Wavelength VCSELs. In: Eisenstein, G., Bimberg, D. (eds) Green Photonics and Electronics. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-67002-7_2

Download citation

Publish with us

Policies and ethics