Skip to main content

Novel Thin-Film Photovoltaics—Status and Perspectives

  • Chapter
  • First Online:
  • 829 Accesses

Part of the book series: NanoScience and Technology ((NANO))

Abstract

In this chapter, we discuss recent advances in novel thin-film photovoltaic devices which allows novel and low-cost applications of photovoltaics. In particular, we discuss organic and perovskite photovoltaics. At the end, we compare the outdoor harvesting efficiency of these novel systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Solar spectrum for standardized testing and characterization of solar cells.

  2. 2.

    The active layer consists of a sequence of at least three absorber materials, whereby adjacent materials form either a planar or bulk heterjunction.

  3. 3.

    As a secondary effect, another partial reflection at the transparent surface will furthermore reflect part of the remaining intensity back into the device, creating an effective cavity between front surface and back contact [15].

  4. 4.

    This concept can be extended beyond two cells, however, the further discussion is limited to two sub-cells where it covers all relevant issues.

  5. 5.

    The MPP denotes the operation voltage, at which the output power, i.e. the product of the output voltage and the output current, is highest. It is found at a voltage slightly below the open-circuit voltage, with its actual position depending on the specific device and its operating conditions.

  6. 6.

    In this simplified description, reflection from the back contact is omitted. In a more detailed view, again, the full interference pattern needs to be taken into account, as discussed above for a single junction cell.

  7. 7.

    The stack sequence is as follows: indium tin oxide/ N,N-Bis(fluoren-2-yl)-naphthalenetetracarboxylic diimide [36] n-doped with 7wt% (weight-percent) tetrakis(1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidinato)ditungsten (II) [37], [38] (thickness 5 nm)/ C60 (15 nm)/ DCV5T:C60 (mixing ratio 2:1 by volume, 40 nm)/ 9,9-bis[4-(N,N-bis-biphenyl-4-yl-amino)phenyl]-9H-fluorene) (BPAPF [39]) (5 nm)/ BPAPF p-doped with 10wt% NDP9 (commercial p-dopant by Novaled) (30 nm)/ N,N'-((Diphenyl-N,N'-bis)9,9,-dimethyl-fluoren-2-yl)-benzidine [40] p-doped with 10 wt% NDP9 (10 nm)/ NDP9 (1 nm)/ Al (100 nm).

  8. 8.

    The OPV cell is measured with a Keithley 2400 source-measure unit, whereas the large modules are measured with a PVPM 2540C source-measure unit.

  9. 9.

    Kipp and Zonen CMP 11.

  10. 10.

    SOZ-03.

  11. 11.

    Tc = Tambient + (TNOCT – 20) * ( I/ 800 W/m2) [41].

References

  1. D.M. Chapin, C.S. Fuller, G.L. Pearson, A new silicon pn junction photocell for converting solar radiation into electrical power. J. Appl. Phys. (1954)

    Google Scholar 

  2. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, M. Powalla, Properties of Cu(In, Ga) Se2 solar cells with new record efficiencies up to 21.7%. Phys. status solidi—Rapid Res. Lett. 9(1), 28–31 (2015)

    Google Scholar 

  3. C.J. Mulligan, M. Wilson, G. Bryant, B. Vaughan, X. Zhou, W.J. Belcher, P.C. Dastoor, A projection of commercial-scale organic photovoltaic module costs. Sol. Energy Mater. Sol. Cells 120(PART A), 9–17 (2014)

    Google Scholar 

  4. R. Gresser, M. Hummert, H. Hartmann, K. Leo, M. Riede, Synthesis and characterization of near-infrared absorbing benzannulated aza-BODIPY dyes. Chem. A Eur. J. 17(10), 2939 (2011)

    Article  Google Scholar 

  5. S. Kraner, J. Widmer, J. Benduhn, E. Hieckmann, T. Jägeler-Hoheisel, S. Ullbrich, D. Schütze, K.S. Radke, G. Cuniberti, F. Ortmann, M. Lorenz-Rothe, R. Meerheim, D. Spoltore, K. Vandewal, C. Körner, K. Leo, Influence of side groups on the performance of infrared absorbing aza-BODIPY organic solar cells. Phys. status solidi 212(12), 2747–2753 (2015)

    Article  Google Scholar 

  6. C.W. Tang, Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48(2), 183–185 (1986)

    Article  Google Scholar 

  7. M. Hiramoto, H. Fujiwara, M. Yokoyama, Three-layered organic solar cell with a photoactive interlayer of codeposited pigments. Appl. Phys. Lett. 58(10), 1062 (1991)

    Article  Google Scholar 

  8. R. Meerheim, C. Körner, K. Leo, Highly efficient organic multi-junction solar cells with a thiophene based donor material. Appl. Phys. Lett. 105(6), 63306 (2014)

    Article  Google Scholar 

  9. R. Meerheim, C. Körner, B. Oesen, K. Leo, 10.4% Efficient triple organic solar cells containing near infrared absorbers. Appl. Phys. Lett. 108(10) (2016)

    Google Scholar 

  10. K. Cnops, B.P. Rand, D. Cheyns, B. Verreet, M.A. Empl, P. Heremans, 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer. Nat. Commun. 5, 3406 (2014)

    Article  Google Scholar 

  11. P. Wurfel, U. Wurfel, Physics of solar cells : from basic principles to advanced concepts (2009)

    Google Scholar 

  12. K. Walzer, B. Maennig, M. Pfeiffer, K. Leo, Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 107(4), 1233–1271 (2007)

    Article  Google Scholar 

  13. M. Pfeiffer, A. Beyer, T. Fritz, K. Leo, Controlled doping of phthalocyanine layers by cosublimation with acceptor molecules: A systematic Seebeck and conductivity study. Appl. Phys. Lett. 73(22), 3202 (1998)

    Article  Google Scholar 

  14. B. Lüssem, M. Riede, K. Leo, Doping of organic semiconductors. Phys. Status Solidi (A) 210(1), 9–43 (2013)

    Google Scholar 

  15. B. Maennig, J. Drechsel, D. Gebeyehu, P. Simon, F. Kozlowski, A. Werner, F. Li, S. Grundmann, S. Sonntag, M. Koch, K. Leo, M. Pfeiffer, H. Hoppe, D. Meissner, N.S. Sariciftci, I. Riedel, V. Dyakonov, J. Parisi, Organic p-i-n solar cells. Appl. Phys. A Mater. Sci. Process. 79(1), 1–14 (2004)

    Article  Google Scholar 

  16. J. Widmer, J. Fischer, W. Tress, K. Leo, M. Riede, Electric potential mapping by thickness variation: A new method for model-free mobility determination in organic semiconductor thin films. Org. Electron. 14(12), 3460–3471 (2013)

    Article  Google Scholar 

  17. M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W.M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, K. Leo, Efficient organic tandem solar cells based on small molecules. Adv. Funct. Mater. 21(16), 3019–3028 (2011)

    Article  Google Scholar 

  18. A. Donges, The coherence length of black-body radiation. Eur. J. Phys. 19(3), 245–249 (1998)

    Article  Google Scholar 

  19. C. Falkenberg, K. Leo, M.K. Riede, Improved photocurrent by using n-doped 2,3,8,9,14,15-hexachloro-5,6,11,12,17,18-hexaazatrinaphthylene as optical spacer layer in p-i-n type organic solar cells. J. Appl. Phys. 110(12), 124509 (2011)

    Article  Google Scholar 

  20. K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, J.V. Manca, Relating the open-circuit voltage to interface molecular properties of donor: acceptor bulk heterojunction solar cells. Phys. Rev. B 81(12), 1–8 (2010)

    Article  Google Scholar 

  21. K. Vandewal, J. Widmer, T. Heumueller, C.J. Brabec, M.D. McGehee, K. Leo, M. Riede, A. Salleo, Increased open-circuit voltage of organic solar cells by reduced donor-acceptor interface area. Adv. Mater. 26(23), 3839–3843 (2014)

    Article  Google Scholar 

  22. T. Mönch, Exploring nanoscale properties of organic solar cells. Ph.D. thesis, TU Dresden (2015)

    Google Scholar 

  23. C. Koerner, Oligothiophene materials for organic solar cells—photophysics and device properties. Ph.D. thesis, TU Dresden (2013)

    Google Scholar 

  24. J. Widmer, M. Tietze, K. Leo, M. Riede, Open-circuit voltage and effective gap of organic solar cells. Adv. Funct. Mater. 23(46), 5814 (2013)

    Article  Google Scholar 

  25. R. Timmreck, S. Olthof, K. Leo, M. Riede, Highly doped layers as efficient electron–hole recombination contacts for tandem organic solar cells. J. Appl. Phys. 108(3), 33108 (2010)

    Article  Google Scholar 

  26. R. Schueppel, R. Timmreck, N. Allinger, T. Mueller, M. Furno, C. Uhrich, K. Leo, M. Riede, Controlled current matching in small molecule organic tandem solar cells using doped spacer layers. J. Appl. Phys. 107(4), 44503 (2010)

    Article  Google Scholar 

  27. X. Che, X. Xiao, J.D. Zimmerman, D. Fan, S.R. Forrest, High-efficiency, vacuum-deposited, small-molecule organic tandem and triple-junction photovoltaic cells. Adv. Energy Mater. 4(18), 1400568 (2014)

    Article  Google Scholar 

  28. Heliatek GmbH (2013). www.heliatek.com

  29. D.B. Mitzi, Synthesis, Structure, and Properties of Organic-Inorganic Perovskites and Related Materials (2007)

    Google Scholar 

  30. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Article  Google Scholar 

  31. M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013)

    Article  Google Scholar 

  32. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)

    Article  Google Scholar 

  33. N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015)

    Article  Google Scholar 

  34. L.E. Polander, P. Pahner, M. Schwarze, M. Saalfrank, C. Koerner, K. Leo, Hole-transport material variation in fully vacuum deposited perovskite solar cells. APL Mater. 2(8), 81503 (2014)

    Article  Google Scholar 

  35. IEC 60904-3: Measurement Principles for Terrestrial PV Solar Devices with Reference Spectral Irradiance Data (1989)

    Google Scholar 

  36. C. Falkenberg, Optimizing organic solar cells transparent electron transport materials for improving the device performance. Ph.D. thesis, TU Dresden (2011)

    Google Scholar 

  37. T. Menke, Molecular doping of organic semiconductors—a conductivity and seebeck study. Ph.D. thesis, TU Dresden: Verlag Dr. Hut (2013)

    Google Scholar 

  38. F.A. Cotton, N.E. Gruhn, J. Gu, P. Huang, D.L. Lichtenberger, C.A. Murillo, L.O. Van Dorn, C.C. Wilkinson, Closed-shell molecules that ionize more readily than cesium. Science (80-) 298(5600), 1971–1974 (2002)

    Google Scholar 

  39. Y.-L. Tung, S.-W. Lee, Y. Chi, Y.-T. Tao, C.-H. Chien, Y.-M. Cheng, P.-T. Chou, S.-M. Peng, C.-S. Liu, Organic light-emitting diodes based on charge-neutral Os(II) emitters: Generation of saturated red emission with very high external quantum efficiency. J. Mater. Chem. 15(4), 460 (2005)

    Article  Google Scholar 

  40. C. Murawski, C. Fuchs, S. Hofmann, K. Leo, M.C. Gather, Alternative p-doped hole transport material for low operating voltage and high efficiency organic light-emitting diodes. Appl. Phys. Lett. 105(11) (2014)

    Google Scholar 

  41. M.C. Alonso García, J.L. Balenzategui, Estimation of photovoltaic module yearly temperature and performance based on Nominal Operation Cell Temperature calculations. Renew. Energy 29(12), 1997–2010 (2004)

    Google Scholar 

  42. E. Cuce, P.M. Cuce, T. Bali, An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters. Appl. Energy 111, 374–382 (2013)

    Article  MATH  Google Scholar 

  43. M.G. Deceglie, T.J. Silverman, B. Marion, S.R. Kurtz, Metastable changes to the temperature coefficients of thin-film photovoltaic modules, in 2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014, pp. 337–340 (2014)

    Google Scholar 

  44. E.A. Katz, D. Faiman, S.M. Tuladhar, J.M. Kroon, M.M. Wienk, T. Fromherz, F. Padinger, C.J. Brabec, N.S. Sariciftci, Temperature dependence for the photovoltaic device parameters of polymer-fullerene solar cells under operating conditions. J. Appl. Phys. 90(10), 5343–5350 (2001)

    Article  Google Scholar 

  45. A. Parretta, A. Sarno, L.R.M. Vicari, Effects of solar irradiation conditions on the outdoor performance of photovoltaic modules. Opt. Commun. 153(1–3), 153–163 (1998)

    Article  Google Scholar 

  46. M. Riede, C. Uhrich, R. Timmreck, J. Widmer, D. Wynands, M. Levichkova, M. Furno, G. Schwartz, W. Gnehr, M. Pfeiffer, K. Leo, Optimization of organic tandem solar cells based on small molecules, in 2010 35th IEEE Photovoltaic Specialists Conference (2010), pp. 513–517

    Google Scholar 

  47. R. Fitzner, E. Mena-Osteritz, A. Mishra, G. Schulz, E. Reinold, M. Weil, C. Koerner, H. Ziehlke, C. Elschner, K. Leo, M. Riede, M. Pfeiffer, C. Uhrich, P. Bäuerle, Correlation of π-conjugated oligomer structure with film morphology and organic solar cell performance. J. Am. Chem. Soc. 134(27), 11064–11067 (2012)

    Article  Google Scholar 

  48. Extraterrestrial sun spectrum AM0. http://rredc.nrel.gov/solar/spectra/am0/special.html

  49. Extraterrestrial sun spectrum AM1.5. http://rredc.nrel.gov/solar/spectra/am1.5/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Leo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oesen, B., Ullbrich, S., Widmer, J., Leo, K. (2017). Novel Thin-Film Photovoltaics—Status and Perspectives. In: Eisenstein, G., Bimberg, D. (eds) Green Photonics and Electronics. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-67002-7_10

Download citation

Publish with us

Policies and ethics