Skip to main content

Feedback Control in Life and Society

  • Chapter
  • First Online:
  • 1398 Accesses

Part of the book series: Intelligent Systems, Control and Automation: Science and Engineering ((ISCA,volume 90))

Abstract

The aim of this chapter is to illustrate the role of feedback, negative and positive, in biological and societal systems and applications (technological, behavioral). Feedback, the third fundamental element of life and society, is a process which is based on energy, and exploits the information existing or generated in each particular case. The mathematical analysis of feedback is more easy to be made successfully for well-defined simple or complex man-made systems, and more difficult or incomplete for living and society systems. For the convenience of the reader the material of this chapter is presented via a number of selected biological, societal, and technological examples. These examples demonstrate that both negative and positive feedback is present and efficiently used by living organisms and human societies. Negative feedback offers the means for achieving stability and the goals of each case. Positive feedback is used whenever a purposeful oscillatory behavior is the desired goal. Negative feedback biological examples considered in this chapter are: temperature regulation, water regulation, sugar regulation, and hydrogen ion (pH) regulation. Positive biological feedback is illustrated by autocatalysis and auto-reproduction chemical reactions. Mathematical models and controllers in biological systems are provided for enzyme operation, biological rhythmic movement, insulin–glucose balancing, and cardiovascular-respiratory system. On the societal side, this chapter discusses four technological (hard) systems (process control, manufacturing systems control, air-flight control, and robotic systems control), and two types of soft systems, namely management control and economic system control. In hard systems, the control means include prime movers and end effectors, whereas in soft systems, the means of control are regulation laws and rules posed by rulers, managers, and government.

Feedback is the fundamental principle that underlies all self-regulating systems, not only machines but also processes of life.

—Arnolst Tustin

Mankind’s history has been a struggle against a hostile environment. We finally reached a point where we can begin to dominate our environment and cease being victims of the vagaries of nature in the form of fire, flood, famine, and pestilence… As soon as we understand this fact, our mathematical interests necessarily shift in many areas from descriptive analysis to control theory.

—Richard Bellman

This is a preview of subscription content, log in via an institution.

References

  1. E. Schrödinger, What is Life? (Canto Edition) (Cambridge University Press, Cambridge, U.K., 1967)

    Google Scholar 

  2. P. Wellstead, Systems biology and the spirit of Tustin, IEEE Control Sys. Mag., pp. 57–71, (February 2010)

    Google Scholar 

  3. G.T. Reeves, S.E. Fraser, Biological systems from an engineer’s point of view. PLoS Biol. 7(1), 32–35 (2009)

    Article  Google Scholar 

  4. Engineering principles in biological systems. http://meetings.cshl.edu/meetings/pastprograms/2006pastprograms/engineprogram.pdf

  5. A. Daskalaki, Handbook of Research on Systems Biology Applications in Medicine, vol. 1, Medical Information Science Reference (Hershey, New York, 2008)

    Google Scholar 

  6. V.Z. Marmarelis, Nonlinear Dynamic Modeling of Physiological Systems (IEEE Press/Wiley, New York, 2004)

    Book  Google Scholar 

  7. H.T. Milhorn, The application of control theory to physiological systems. http://home.comcast.net/~milhorn1 http://www.milhornbooks.com/control.html

  8. T.E. Bellows, T.W. Fisher et al., Handbook of Biological Control: Principles and Applications of Biological Control (Academic Press, New York, 1999)

    Google Scholar 

  9. R.S. Parker, F.J. Doyle III, M.A. Henson, Integrating Biological Systems in the Process Dynamics and Control Curriculum, Ch E Division of ASEE, pp. 181–188, (2006)

    Google Scholar 

  10. C.G. Gross, Claude bernard and the constancy of the internal environment. Neuroscientist 4, 380–385 (1998)

    Article  Google Scholar 

  11. W.B. Cannon, The Wisdom of the Body (Norton, New York, 1932)

    Google Scholar 

  12. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  13. N. Wiener, Cybernetics: Control and Communication in the Animal and the Machine (Hermann, Paris and MIT Press, Boston MA, 1948)

    Google Scholar 

  14. L.E. Bayliss, Living Control Systems (English University Press, London, 1966)

    Google Scholar 

  15. M.D. Mesarovic, Systems Theory and Biology (Springer, Berlin, 1968)

    Book  MATH  Google Scholar 

  16. L. Bertanlafly, General Systems Theory: Foundations, Development Applications (Brazillier, New York, 1969)

    Google Scholar 

  17. U. Stelling, U. Saner, Z. Szallasi, F. Doyle, J. Doyle, Robustness of cellular functions. Cell 118(6), 675–685 (2004)

    Article  Google Scholar 

  18. H. Kitano, Toward a theory of biological robustness. Mol. Sys. Biol. 3(137), 1–7 (2007)

    Google Scholar 

  19. A. Cornish-Bowden, Putting the systems back into systems biology. Perspect. Biol. Med. 49(4), 475–489 (2006)

    Article  MathSciNet  Google Scholar 

  20. J. Keener, J. Sneyd, Mathematical Physiology (Springer, Berlin, 1998)

    MATH  Google Scholar 

  21. A. Cornish-Bowden, Fundamentals of Enzyme Kinetics (Portland Press, New York, 2004)

    Google Scholar 

  22. Y-K. Kwon, K.-H. Cho, Boolean dynamics of biological networks with multiple coupled feedback loops, Biophys. J. 92(8), 2975–2981 (2007)

    Google Scholar 

  23. N. Barkai, S. Leibler, Robustness in simple biochemical networks. Nature 387, 913–917 (1997)

    Article  Google Scholar 

  24. R. Thomas, R. D’Ari, Biological Feedback (CRC Press, Boca Raton, FL, 1989)

    MATH  Google Scholar 

  25. D.E. Koshland Jr., A. Goldbeter, Amplification and adaptation in regulatory sensory systems. Science 217, 220–225 (1985)

    Article  Google Scholar 

  26. O. Cinquin, J. Demongeot, Positive and negative feedback striking a balance between necessary antagonists. J. Theor. Biol. 216(2), 229–241 (2002)

    Article  MathSciNet  Google Scholar 

  27. K.S. Saladin, Homeostasis, biology encyclopedia. http://www.biologyreference.com/Ho-La/Homeostasis.html

  28. Physiological Homeostasis, Biology online. http://www.biology-online.org/4/1_physiological_homeostasis.htm

  29. Control, Regulation and Feedback. http://bcs.whfreeman.com/thelifewire/content/chp41/41020.html

  30. P. Revest, Physiological control mechanisms and homeostasis. http://www.medicaltextbooksrevealed.com/files/12688-53.pdf

  31. K.S. Saladin, Anatomy and Physiology: The Unity of Form and Function (McGraw-Hill, Dubuque, IA, 2001)

    Google Scholar 

  32. W.W. Blessing, The Lower Brainstem and Bodily Homeostasis (Oxford University Press, Oxford, 1997)

    Google Scholar 

  33. D.-E. Chang, S. Leung, M.R. Atkinson, A. Reifler, D. Forger, A.J. Ninfa, Building biological memory by linking positive feedback loops. Proc. Nat. Acad. Sci. U.S.A. 107(1), 175–180 (2010)

    Google Scholar 

  34. D. Angeli, J.E. Ferrel Jr., E.D. Sontag, Detection of multistability, bifurcations, and hysteresis in a large class of biological—feedback systems. Proc. Nat. Acad. Sci. U.S.A. 101, 1822–1827 (2004)

    Article  Google Scholar 

  35. J.E. Ferrel Jr., Feedback regulation of opposing enzymes generates robust, all-or-none bistable responses. Curr. Biol. 18, R244–R245 (2008)

    Article  Google Scholar 

  36. A.J. Lotka, Contribution to the theory of periodic reactions. J. Phys. Chem. 14, 271–274 (1910)

    Article  Google Scholar 

  37. J. Monod, F. Jacob, General conclusions: teleonomic mechanisms in cellular metabolism, growth and differentiation, cellular regulatory mechanisms. Cold Spring Harbour Symp. Quant. Biol. 26, 389–401 (1961)

    Article  Google Scholar 

  38. R. Prigogine, Lefever, symmetry breaking instabilities in dissipative systems. J. Chem. Phys. 48, 1665–1700 (1968)

    Article  Google Scholar 

  39. B. Kochel, Modulatory effects of peptide nucleic acids on human neutrophil activity in vitro manifested by phagocyte luminescence, Wroclaw University of Medicine Report/Lecture Wroclaw, 1996. Also: In: Experimentia, vol. 48, pp. 1059–1069 (1992)

    Google Scholar 

  40. B. Kochel, Control of the first-line human defense system: an autocatalytic model. Kybernetes 28(4), 430–440 (1999)

    Article  MATH  Google Scholar 

  41. T. Broker, L. Lander, Differential Germs and Catastrophes (Cambridge University Press, Cambridge, 1975)

    Book  Google Scholar 

  42. R. Thom, Structural Stability and Morphogenesis, (Benjamin/Cramming, Reading, 1975)

    Google Scholar 

  43. K.N. Ganeshaiah, R. Vasudeva, R. Uma Shaanker, Development of sinks as an autocatalytic feedback process: a test using the asymmetric growth of leaves in Mestha (Hibiscus Cannabinus L.). Ann. Bot. 76(1), 71–77 (1995)

    Article  Google Scholar 

  44. K.N. Ganeshaiah, R. Uma Shaanker, Frequency distribution of seed number per fruit in plants: a consequence of self organizing process? Curr. Sci. 62, 359–365 (1992)

    Google Scholar 

  45. E.D. Sontag, Some new directions in control theory inspired by systems biology. Syst. Biol. 1(1), 9–18 (2004)

    Article  Google Scholar 

  46. P.A. Iglesias, B.P. Ingalls (eds.), Control Theory and Systems Biology (The MIT Press, Cambridge, 2010)

    MATH  Google Scholar 

  47. A. Bennet, A History of Control Engineering 1930–1955 (IEE/Peter Peregrinus, London, pp. 133, 1993)

    Google Scholar 

  48. G.T. Reeves, S.E. Fraser, Biological systems from an engineer point of view. PLoS Biol. 7, e21 (2009). doi:10.1371/journal.pbbio.1000021

    Article  Google Scholar 

  49. C.W. Swan, Applications of Optimal Control Theory in Biomedicine (Marcel Dekker, New York, 1984)

    MATH  Google Scholar 

  50. E. Marder, R. Calabrese, Principles of rhythmic motor pattern generation. Physiol. Rev. 76(3), 687–717 (1996)

    Article  Google Scholar 

  51. V. Vuksanovic, C. Radenovic, B. Belesin, Oscillatory phenomena, processes and mechanisms-physical and biolocal analogy, IPPA 1998 Conf., BIBLID 0021-3225, 34, 247–258 (1998)

    Google Scholar 

  52. M.F. Simoni, S.P. DeWeerth, Sensorimotor feedback in a closed –loop model of biological rhythmic movement control. Proc. 24th Annual Conf. on Engineering in Medicine and Biology, p. 2561, Houston, 23–26 Oct 2002

    Google Scholar 

  53. S. Waldherr, T. Eissing, F. Allgower, Analysis of feedback mechanisms in cell-biological systems. Proc. 17th World IFAC Congress, pp 15861–15866, Seoul Korea, 6–11 July 2008

    Google Scholar 

  54. R. Heinrich, S. Schuster, The Regulation of Cellular Systems (Chapman and Hall, New York, 1996)

    Book  MATH  Google Scholar 

  55. A. Schitztler, J. Gross, Normal and pathological oscillatory communication in the brain. Natl. Rev. Neurosci. 6, 285–295 (2005)

    Article  Google Scholar 

  56. R.E. Dolmetsch, K. Xu, R.S. Lewis, Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392, 933–936 (1998)

    Article  Google Scholar 

  57. J. Sturis, K.S. Polonsky, E. Mosekilde, E. Van Cauter, Computer model for mechanisms underlying ultradian oscillations of insulin and glucose. Amer. J. Physiol. Endocrinol Metab 260, E801–E809 (1991)

    Article  Google Scholar 

  58. E.D. Lehmann, A physiological model of glucose-insulin interaction in type 1 diabetes melitus. J. Biomed. Eng. 14(3), 235–242 (1992)

    Article  Google Scholar 

  59. A. Makroglou, J. Li, Y. Kuang, Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: an overview. Appl. Numer. Math. 56(3), 559–573 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  60. G.D. Mitsis, M.G. Markakis, V.Z. Marmarelis, Nonlinear modeling of the dynamic effects of infused insulin on glucose: comparison of compartmental with volterra models. IEEE Trans. Biomed Eng. 56(10), 2347–2358 (2009)

    Article  Google Scholar 

  61. M.G. Markakis, G.D. Mitsis, G.P. Papavassilopoulos, V.Z. Marmarelis, Model predictive control of blood glucose in type 1 diabetes: the principal dynamic modes approach, Proc. IEEE Conf. on Engineering in Biology Society, pp. 5466–5469 (2008)

    Google Scholar 

  62. G.D. Mitsis, V.Z. Marmarelis, Modeling of nonlinear physiological systems with fast and slow dynamics i: methodology. Ann. Biomed. Eng. 30, 272–281 (2002)

    Article  Google Scholar 

  63. R.N. Bergman, Y.Z. Ider, C.R. Bowden, C. Cobelli, Quantitative estimation of insulin sensitivity. Amer. J. Physiol. 236, E667–E667 (1979)

    Google Scholar 

  64. A. De Gaetano, O. Arino, Mathematical modeling of the intravenous glucose tolerance test. J. Mathem. Biol. 40, 136–168 (2000)

    Article  MATH  Google Scholar 

  65. R. Abu Zitar, Towards neural network model for insulin/glucose in diabetics–II. Informatica 29, 227–232 (2005)

    Google Scholar 

  66. H. Wang, J. Li, Y. Kuang, Mathematical modeling and qualitative analysis of insulin therapies. Math. Biosci. 210, 17–33 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  67. J. Li, Y. Kuang, C.C. Masa, Modeling the glucose-insulin regulatory system and ultradian insulin. J. Theor. Biol. 242, 722–735 (2006)

    Article  Google Scholar 

  68. I.-M. Tolic, E. Mosekilde, J. Sturis, Modeling the insulin-glucose-feedback system: the significance of pulsatile insulin secretion. J. Theor. Biol. 207, 361–375 (2000)

    Article  Google Scholar 

  69. L. Kovacs, B. Paláncz, Z. Benyo, Classical and modern control strategies in glucose—insulin stabilization, http://mycite.omikk.bme.hu/15987.pdf

  70. M.C.K. Khoo, A Model of Respiratory Variability During Non-REM Sleep, ed. by G.D. Swanson, F.S. Grodins, R.L. Hughson, Respiratory Control: A Modeling Perspective (Plenum Press, New York, 1989)

    Google Scholar 

  71. K. Wasserman, B.J. Whipp, R. Casaburi, Respiratory Control During Exercise, ed. by A.P. Fishman, N.S. Cherniak, J.G. Widdicombe and S.R. Geiger, Handbook of Physiology, Section 3: The Respiratory System, vol. III, Control of Breathing Part 2, (American Phys. Society, Bethesda, Maryland, 1986)

    Google Scholar 

  72. J. Trinder, F. Whitworth, A. Kay, P. Wilkin, Respiratory instability during sleep onset. J. Appl. Physiol. 73(6), 2462–2469 (1992)

    Article  Google Scholar 

  73. J.J. Batzel, H.T. Tran, Modeling instability in the control system for human respiration: applications to infant non-rem sleep. Appl. Math. Comput. 110, 1–51 (2000)

    MathSciNet  MATH  Google Scholar 

  74. M.C.K. Khoo, R.E. Kronauer, K.P. Strohl, A.S. Slutsly, Factors inducing periodic breathing in humans: a general model. J. Appl. Physiol. 53(3), 644–659 (1982)

    Article  Google Scholar 

  75. L.B. Rowell, Cardiovascular Control (Oxford University Press, New York, 1993)

    Google Scholar 

  76. H. Tsuruta, T. Sato, M. Shirataka, N. Ikeda, Mathematical model of the cardiovascular mechanics for diagnostic analysis and treatment of heart failure: part 1, model description and theoretical analysis. Med. Biol. Eng. Comp. 32(1), 3–11 (1994)

    Article  Google Scholar 

  77. F.S. Grodins, Integrative cardiovascular physiology: a mathematical model synthesis of cardiac and blood vessel hemodynamics. Q. Rev. Biol. 34(2), 93–116 (1959)

    Article  Google Scholar 

  78. J.J. Batzel, F. Kappel, S. Timischi-Teschi, A cardiovascular-respiratory control system model including state delay with application to congestive heart failure in humans. J. Math. Biol. 50(3), 293–335 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  79. J.J. Batzel, F. Kappel, D. Schneditz, H.T. Tran, Cardiovascular and Respiratory Systems: Modeling Analysis and Control (Cambridge University Press, Cambridge, 2010)

    MATH  Google Scholar 

  80. S. Poore, Overview of social control theories, The Hewett School http://www.hewett.norfolk.sch.uk/curric/soc/crime

  81. C. Livesay, Informal Social Control http://www.sociology.org/uk/p2s5an4.htm

  82. F. Aftalian (Translator O. Theodor), A History of the International Chemical Industry (University of Pennsylvania Press, Philadelphia, 1991)

    Google Scholar 

  83. J. Hahn, D.P. Guillen, T. Anderson, Process control systems in the chemical industry: safety vs. security (Preprint), Idaho National Laboratory, INL/COW-05-00001, April 2005

    Google Scholar 

  84. T.M. Stout, T.J. Williams, Pioneering work in the field of computer process control. IEEE Ann. Hist. Comput. 17(1), 6–18 (1995)

    Article  Google Scholar 

  85. SIMATIC PCS7, The Process Control System SIMATICPCS7, Siemens AG, 2009

    Google Scholar 

  86. S.G. Tzafestas (ed.), Microprocessor in Signal Processing Measurement and Control (D. Reidel, Dordrecht, 1983)

    Google Scholar 

  87. S.G. Tzafestas, J.K. Pal (eds.), Real-Time Microcomputer Control of Industrial Processes (Kluwer, Boston/Dordrecht, 1990)

    Google Scholar 

  88. N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, J.D. Reese, Requirements specification for process control systems. IEEE Trans. Softw. Eng. 20(9), 684–697 (1994)

    Article  Google Scholar 

  89. S.G. Tzafestas (ed.), Advances in Manufacturing: Decision, Control and Information Technology (Springer, London/Berlin, 1999)

    Google Scholar 

  90. S. Lee, A. Wysk, J.S. Smith, Process planning interface for shop floor control architecture for computer. Integrated manufacturing, Int. J. Prod. Res. 33(9), 2415–2435 (1994)

    Google Scholar 

  91. P.G. Ranky, Computer Integrated Manufacturing: An Introduction with Case Studies (Prentice Hall, Englewood Cliffs, N.J., 1986)

    Google Scholar 

  92. A. Kusiak, Intelligent Manufacturing Systems (Prentice Hall, Englewood Cliffs, NJ, 1990)

    MATH  Google Scholar 

  93. D. McFarlane, S. Sarma, J.L. Chirn, C.Y. Wong, K. Ashton, The Intelligent Product in Manufacturing Control (Proc IFAC World Congress, Barcelona, 2002)

    Google Scholar 

  94. J. Taylor, The Lore of Flight (Universal Books, London, 1990)

    Google Scholar 

  95. C.R. Spitzer, The Avionics Handbook (CRC Press, Boca Raton/London, 2001)

    Google Scholar 

  96. Airbus A380 Cockpit. http://www.airlines.net

  97. Introduction to Aircraft Control, NASA. http://dcb.larc.nasa.gov

  98. N.B. Sarter, D.D. Woods, Pilot interaction with cockpit automation: operational experiences with the flight management system. Intern. J. Aviat. Psychol. 2, 303–321 (1992)

    Article  Google Scholar 

  99. N.B. Sarter, D.D. Woods, C.E. Billings, Automation Surprises, ed. by G. Salvendy, Handbook of Human Factors and Ergoeconomics (Wiley New York, 1997), pp 1926–1943

    Google Scholar 

  100. M.S. Nolan, Fundamentals of Traffic Control (Books Cole Pub. Co, Pacific Grove, 1999)

    Google Scholar 

  101. S. Nof, Handbook of Industrial Robots (J. Wiley, New York, 1999)

    Book  Google Scholar 

  102. S. Tzafestas, Introduction to Mobile Robot Control (Elsevier, New York, 2013)

    Google Scholar 

  103. S. Tzafestas, Sociorobot World: A Guided Tour for All (Springer, Berlin/New York, 2015)

    Google Scholar 

  104. R. Anthony, D. Young, Management Control Systems (Irwin, McGraw Hill Chicago, 1999)

    Google Scholar 

  105. R.L. Simons, Levers of Control: How Managers Use Innovative Control Systems to Drive Strategic Renewal (Harvard Business School Press, Boston, MA, 1995)

    Google Scholar 

  106. F.S. Hillier, G.J. Lieberman, Introduction to Operations Research, 8th edn. (McGraw-Hill, New York, 2005)

    MATH  Google Scholar 

  107. S.G. Tzafestas, Optimization and Control of Dynamic Operational Research Models (North-Holland, Amsterdam, 1982)

    MATH  Google Scholar 

  108. K. Langfield-Smith, Management control systems and strategy: a critical review. Acc. Organ. Soc. 22(2), 207–232 (1997)

    Article  Google Scholar 

  109. R. Anthony, V. Govindarajan, Management Control Systems (McGraw-Hill, Chicago, Irwin, 2007)

    Google Scholar 

  110. D. Otley, Management control in contemporary organizations: towards a wider framework management. Acc. Res. 5, 289–299 (1994)

    Article  Google Scholar 

  111. J. Maciariello, C. Kirby, Management Control Systems to Attain Control (Prentice-Hall, New Jersey, 1994)

    Google Scholar 

  112. ICMR, Management Control Systems: Overview, 2nd edn, IBS Center for Management Research: An Integrated Approach to Performance and Compliance (IBS-CDC, Hyderabad, India, 2010)

    Google Scholar 

  113. J.C. Lere, K. Portz, Management control systems in global economy, The CPA Journal http://www.nysscpa.org/cpajournal/2005/905/essentials/p.62.htm

  114. D.M. Daley, Strategic Human Resource Management: People and Performance Management in the Public Sector (Prentice-Hall, Upper Saddle River, NJ, 2002)

    Google Scholar 

  115. R.S. Goldfarb, J. Ratner, Economics in practice: follow-up theory and models: terminology through the looking glass. Econ. J. Watch 5(1), 91–108 (2008)

    Google Scholar 

  116. K. Hoover, Facts and artifacts: calibration and the empirical assessment of real-business-cycle models. Oxford Econ. Papers New Ser. 47(1), 24–44 (1995)

    Article  Google Scholar 

  117. D. Klein, P. Romero, Model-building versus theorizing: the paucity of theory. J. Econ. Theory Econ. J. Watch 4(2), 241–271 (2007)

    Google Scholar 

  118. P. Kopacek (ed.), Advanced Control Strategies for Social and Economic Systems (Elsevier, Amsterdam, 2005)

    Google Scholar 

  119. P. Chen, S.M.N. Islam, Optimal Control Models in Finance: A New Computational Approach (Applied Optimization) (Springer, London/Berlin, 2004)

    Google Scholar 

  120. G.C. Chow, Analysis and Control of Dynamic Economic Systems (Krieger Publ. Co., Malabar, FL, 1986)

    Google Scholar 

  121. F.W. Taylor, On the art of cutting metals. ASME J. Engrg Ind. 28, 31–35 (1906)

    Google Scholar 

  122. J.H. Westcott, A.G. J. MacFarlane, J. Mason, Application of control theory to macroeconomic models and discussion, Online ISSN1471-2946, The Royal Society (2010)

    Google Scholar 

  123. V.Z. Belenky, A.M. Belostovsky, Control of economic systems under the process of data improvement. J. Econ. Dyn. Control 12(4), 609–633 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  124. A. Leijonhufvud, Models and theories. J. Econ. Methodol. 4(2), 193–198 (1997)

    Article  Google Scholar 

  125. A. Mas-Collell, M. Winston, J.R. Green, Microeconomic Theory (University Press, Oxford, 1995)

    Google Scholar 

  126. W.B. Arthur, Positive feedbacks in economics, Sci. Am. 262, 99–109, Feb 1990

    Google Scholar 

  127. Biofeedback Technology: A Prospectus. http://www.athealth.com/Practitioner/particles/Guest_CoopersteinMA.html

  128. Biofeedback information from the Mayo Clinic. http://www.mayoclinic.com/health/biofeedback/SA00083

  129. Biofeedback from Zing Health in Australia. http://www.singhealth.com.au/bio-feedback.php

  130. Biofeedback.http://en.wikipedia.org/wiki/Biofeedback

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyros G. Tzafestas .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tzafestas, S.G. (2018). Feedback Control in Life and Society. In: Energy, Information, Feedback, Adaptation, and Self-organization. Intelligent Systems, Control and Automation: Science and Engineering, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-319-66999-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66999-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66998-4

  • Online ISBN: 978-3-319-66999-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics