Skip to main content

Types of Simulation

  • Chapter
  • First Online:

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

This looks at various ways that computer simulations can differ not in terms of their detailed mechanisms but in terms of its broader purpose, structure, ontology (what is represented), and approach to implementation. It starts with some different roles of people that may be concerned with a simulation and goes on to look at some of the different contexts within which a simulation is set (thus implying its use or purpose). It then looks at the kinds of system that might be simulated. Shifting to the modelling process, it looks at the role of the individuals within the simulations, the interactions between individuals, and the environment that they are embedded within. It then discusses the factors to consider in choosing a kind of model and some of the approaches to implementing it.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    This distinction is of course not set in stone. For an example of an evidence-driven approach to computer simulation, see Chap. 27 in this volume (Geller and Moss 2017).

  2. 2.

    http://www.simport.eu/

References

  • Amblard, F., & Quattrociocchi, W. (2017). Social networks and spatial distribution. doi:https://doi.org/10.1007/978-3-319-66948-9_19.

    Google Scholar 

  • Anderson, J. R., et al. (2004). An integrated theory of the mind. Psychological Review, 111(4), 1036–1060.

    Article  Google Scholar 

  • Barreteau, O., Bots, P., Daniell, K., Etienne, M., Perez, P., Barnaud, C., et al. (2017). Participatory approaches. In B. Edmonds & R. Meyer (Eds.), Simulating social complexity: A handbook. Berlin: Springer-Verlag.

    Google Scholar 

  • Bazzan, A.L.C., & Bordini, R.H. (2001). A framework for the simulation of agents with emotions: Report on experiments with the iterated prisoners dilemma. In Fifth international conference on autonomous agents, Montreal, 2001 (pp. 292–299). New York: ACM Press.

    Google Scholar 

  • Bratman, M. E. (1987). Intentions, plans, and practical reason. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Broersen, J., Dastani, M., Huang, Z., Hulstijn, J., & Van der Torre, L. (2001). The BOID architecture: Conflicts between beliefs, obligations, intentions and desires. In Fifth international conference on autonomous agents, Montreal, 2001 (pp. 9–16). New York: ACM Press.

    Google Scholar 

  • Chen, D., Theodoropoulos, G. K., Turner, S. J., Cai, W., Minson, R., & Zhang, Y. (2008). Large-scale agent-based simulation on the grid. Future Generation Computer Systems, 24(7), 658–671.

    Article  Google Scholar 

  • Conte, R., & Gilbert, N. (Eds.). (1995). Artificial societies: The computer simulation of social life. London: UCL Press.

    Google Scholar 

  • David, N., Fachada, N., & Rosa, A. C. (2017). Verifying and validating simulations. In B. Edmonds & R. Meyer (Eds.), Simulating social complexity: A handbook. Berlin: Springer-Verlag.

    Google Scholar 

  • Davidsson, P. (2000). Multi agent based simulation: Beyond social simulation. In S. Moss & P. Davidsson (Eds.), Multi agent based simulation, Lecture notes in computer science (Vol. 1979, pp. 98–107). Berlin: Springer.

    Google Scholar 

  • Dignum, V. (2013). Organisational design. In B. Edmonds & R. Meyer (Eds.), Simulating social complexity – A handbook (pp. 541–562). Berlin: Springer.

    Chapter  Google Scholar 

  • Edmonds, B., Lucas, P., Rouchier, J., & Taylor, R. (2017). Human societies: Understanding observed social phenomena. In B. Edmonds & R. Meyer (Eds.), Simulating social complexity: A handbook. Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Gardner, M. (1970). Mathematical games: The fantastic combinations of John Conway’s new solitaire game “Life”. Scientific American, 223(4), 120–124.

    Article  Google Scholar 

  • Geller, A., & Moss, S. (2017). Modeling power and authority: An emergentist view from Afghanistan. In B. Edmonds & R. Meyer (Eds.), Simulating social complexity: A handbook. Berlin: Springer-Verlag.

    Google Scholar 

  • Georgeff, M., Pell, B., Pollack, M., Tambe, M., & Wooldridge, M. (1998). The belief-desire-intention model of agency. In J. Muller, M. Singh, & A. Rao (Eds.), Intelligent agents V, Lecture notes in artificial intelligence (Vol. 1555, pp. 1–10). Berlin: Springer.

    Google Scholar 

  • Gilbert, N. (2006). When does social simulation need cognitive models? In R. Sun (Ed.), Cognition and multi-agent interaction: From cognitive modelling to social simulation (pp. 428–432). Cambridge: Cambridge University Press.

    Google Scholar 

  • Gilbert, N., & Doran, J. (Eds.). (1994). Simulating societies. London: UCL Press.

    Google Scholar 

  • Gilbert, N., Pyka, A., & Ahrweiler, P. (2001). Innovation networks: A simulation approach. Journal of Artificial Societies and Social Simulation, 4(3). http://jasss.soc.surrey.ac.uk/4/3/8.html

  • Gilbert, N., & Troitzsch, K. G. (2005). Simulation for the social scientist (2nd ed.). Maidenhead: Open University Press & McGraw Hill Education.

    Google Scholar 

  • Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., et al. (2006). A standard protocol for describing individual-based and agent-based models. Ecological Modelling, 198, 115–126.

    Article  Google Scholar 

  • Guye-Vuillème, A. (2004). Simulation of nonverbal social interaction and small groups dynamics in virtual environments. PhD thesis, Ècole Polytechnique Fédérale de Lausanne, No 2933.

    Google Scholar 

  • Hales, D. (2017). Distributed computer systems. doi:https://doi.org/10.1007/978-3-319-66948-9_23.

    Google Scholar 

  • Hemelrijk, C. (2017). Animal social behaviour. doi:https://doi.org/10.1007/978-3-319-66948-9_24.

    Google Scholar 

  • Janssen M.A., & Jager, W. (1999). An integrated approach to simulating behavioural processes: A case study of the lock-in of consumption patterns. Journal of Artificial Societies and Social Simulation, 2(2). http://jasss.soc.surrey.ac.uk/2/2/2.html

  • Künzel, J., & Hämmer, V. (2006). Simulation in university education: The artificial agent PSI as a teaching tool. Simulation, 82(11), 761–768.

    Article  Google Scholar 

  • Le Page, C., Bazile, D., Becu, N., Bommel, P., Bousquet, F., Etienne, M., et al. (2017). Agent-based modelling and simulation applied to environmental management. doi:https://doi.org/10.1007/978-3-319-66948-9_22.

    Google Scholar 

  • Massaguer, D., Balasubramanian, V., Mehrotra, S., & Venkatasubramanian, N. (2006, May 8). Multi-agent simulation of disaster response. In N.R. Jennings, M. Tambe, T. Ishida, & S.D. Ramchurn (Eds.), First international workshop on agent technology for disaster management, Hakodate, Hokkaido, Japan (pp. 124–130). http://users.ecs.soton.ac.uk/sdr/atdm/ws34atdm.pdf

  • Méndez, G., Rickel, J., & de Antonio, A. (2003). Steve meets Jack: The integration of an intelligent tutor and a virtual environment with planning capabilities. In Intelligent virtual agents, Lecture notes on artificial intelligence (Vol. 2792, pp. 325–332). Berlin: Springer.

    Chapter  Google Scholar 

  • Newell, A. (1994). Unified theories of cognition. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Railsback, S. F., Lytinen, S. L., & Jackson, S. K. (2006). Agent-based simulation platforms: Review and development recommendations. Simulation, 82(9), 609–623.

    Article  Google Scholar 

  • Railsback, S. F., & Grimm, V. (2011). Agent-based and individual-based modeling: A practical introduction. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Ramstedt, L., Törnquist Krasemann, J., & Davidsson, P. (2017). Movement of people and goods. doi:https://doi.org/10.1007/978-3-319-66948-9_26.

    Google Scholar 

  • Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioural model. Computer Graphics, 21(4), 25–34.

    Article  Google Scholar 

  • Rouchier, J. (2017). Agent-Based simulation as a useful tool for the study of markets. doi:https://doi.org/10.1007/978-3-319-66948-9_25.

    Google Scholar 

  • Sawyer, R. K. (2003). Artificial societies: Multi-agent systems and the micro-macro link in sociological theory. Sociological Methods & Research, 31(3), 325–363.

    Article  MathSciNet  Google Scholar 

  • Schelling, T. C. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1, 143–186.

    Article  MATH  Google Scholar 

  • Schiff, J. L. (2008). Cellular automata: A discrete view of the world. Oxford: Wiley.

    MATH  Google Scholar 

  • Schüle, M., Herrler, R., & Klügl, F. (2004). Coupling GIS and multi-agent simulation: Towards infrastructure for realistic simulation. In G. Lindemann, J. Denzinger, I.J. Timm, & R. Unland (Eds.), Multiagent system technologies, second German conference, MATES 2004, LNCS (Vol. 3187, pp. 228–242). Berlin: Springer.

    Google Scholar 

  • Verhagen, H. (2001). Simulation of the learning of norms. Social Science Computer Review, 19(3), 296–306.

    Article  Google Scholar 

  • Williams, R. (1993). An agent based simulation environment for public order management training. In Western simulation multiconference, object-oriented simulation conference (pp. 151–156).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Davidsson .

Editor information

Editors and Affiliations

Further Reading

Further Reading

Gilbert and Troitzsch (2005) also have sections that describe the different kinds of simulation available. Railsback and Grimm (2011) present a complementary analysis, coming from ecological modelling. The introductory chapters in (Gilbert and Doran 1994) and (Conte and Gilbert 1995) map out many of the key issues and aspects in which social simulation has developed.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davidsson, P., Verhagen, H. (2017). Types of Simulation. In: Edmonds, B., Meyer, R. (eds) Simulating Social Complexity. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-66948-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66948-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66947-2

  • Online ISBN: 978-3-319-66948-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics