Skip to main content

Simulating Complexity of Animal Social Behaviour

  • Chapter
  • First Online:
Simulating Social Complexity

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Complex social phenomena occur not only among humans, but also throughout the animal kingdom, from bacteria and amoebae to non-human primates. At a lower complexity they concern phenomena such as the formation of groups and their coordination (during travelling, foraging, and nest choice) and at a higher complexity they deal with individuals that develop individual differences that affect the social structure of a group (such as its dominance hierarchy, dominance style, social relationships and task division). In this chapter, we survey models that give insight into the way in which such complex social phenomena may originate by self-organisation in groups of beetle larvae, in colonies of ants and bumblebees, in groups of fish, and groups of primates. We confine ourselves to simulations and models within the framework of complexity science. These models show that the interactions of an individual with others and with its environment lead to patterns at a group level that are emergent and are not coded in the individual (genetically or physiologically), such as the oblong shape of a fish school, variable shape in bird flocks, specific swarming pattern in ants, the centrality of dominants in primates, patterns of exchange and of ‘reconciliation’ and the task division among bumble bees. The hypotheses provided by these models appear to be more parsimonious than usual in the number of adaptive traits and the degree of cognitive sophistication involved. With regard to the usefulness of these simulations, we discuss for each model what kind of insight it provides, whether it is biologically relevant, and if so, whether it is specific to the species and environment and to what extent it delivers testable hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aureli, F., Cords, M., & Van Schaik, C. P. (2002). Conflict resolution following aggression in gregarious animals: a predictive framework. Animal Behaviour, 64, 325–343.

    Article  Google Scholar 

  • Aureli, F., et al. (2008). Fission-fusion dynamics: New research frameworks. Current Anthropology, 49, 627–654.

    Google Scholar 

  • Axelsen, B. E., Anker-Nilssen, T., Fossum, P., Kvamme, C., & Nottestad, L. (2001). Pretty patterns but a simple strategy: Predator-prey interactions between juvenile herring and Atlantic puffins observed with multibeam sonar. Canadian Journal of Zoology-Revue Canadienne De Zoologie, 79, 1586–1596.

    Article  Google Scholar 

  • Bernstein, I. S., & Gordon, T. P. (1980). The social component of dominance relationships in rhesus monkeys (Macaca mulatta). Animal Behaviour, 28, 1033–1039.

    Article  Google Scholar 

  • Beshers, S. N., & Fewell, J. F. (2001). Models of division of labour in social insects. Annual Review of Entomology, 46, 413–440.

    Article  Google Scholar 

  • Blom, J. V. D. (1986). Reproductive dominance within the colony of Bombus terrestris. Behaviour, 97, 37–49.

    Article  Google Scholar 

  • Bonabeau, E., Theraulaz, G., & Deneubourg, J.-L. (1996a). Mathematical models of self-organizing hierarchies in animal societies. Bulletin of Mathematical Biology, 58, 661–717.

    Article  MATH  Google Scholar 

  • Bonabeau, E., Theraulaz, G., & Deneubourg, J.-L. (1996b). Quantitative study of the fixed threshold model for the regulation of division of labour in insect societies. Proceedings of the Royal Society of London B, 263, 1565–1569.

    Article  Google Scholar 

  • Buhl, J., et al. (2006). From disorder to order in marching locusts. Science, 312, 1402–1406.

    Article  Google Scholar 

  • Bumann, D., & Krause, J. (1993). Front individuals lead in shoals of 3-spined sticklebacks (Gasterosteus-Aculeatus) and juvenile roach (Rutilus-Rutilus). Behaviour, 125, 189–198.

    Article  Google Scholar 

  • Bumann, D., Krause, J., & Rubenstein, D. (1997). Mortality risk of spatial positions in animal groups: the danger of being in the front. Behaviour, 134, 1063–1076.

    Article  Google Scholar 

  • Caldecott, J. O. (1986). Mating patterns, societies and ecogeography of macaques. Animal Behaviour, 34, 208–220.

    Article  Google Scholar 

  • Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2001). Self-organization in biological systems. (Princeton studies in complexity). Princeton and Oxford: Princeton University Press.

    MATH  Google Scholar 

  • Carere, C., Welink, D., Drent, P. J., Koolhaas, J. M., & Groothuis, T. G. G. (2001). Effect of social defeat in a territorial bird (Parus major) selected for different coping styles. Physiology and Behavior, 73, 427–433.

    Article  Google Scholar 

  • Chase, I. D., Bartelomeo, C., & Dugatkin, L. A. (1994). Aggressive interactions and inter-contest interval: how long do winners keep winning? Animal Behaviour, 48, 393–400.

    Article  Google Scholar 

  • Chattoe-Brown, E., & Edmonds, B. (2017). Evolutionary mechanisms. In Simulating social complexity–A handbook. Chapter 21 in this volume.

    Google Scholar 

  • Cooper, M. A. (2004). Inter-group relationships. In B. Thierry, M. Singh, & W. Kaumanns (Eds.), Macaque societies: A model for the study of social organization. Cambridge: Cambridge University Press.

    Google Scholar 

  • Couzin, I. D., Krause, J., Franks, N. R., & Levin, S. A. (2005). Effective leadership and decision-making in animal groups on the move. Nature, 433, 513–516.

    Article  Google Scholar 

  • Couzin, I. D., Krause, J., James, R., Ruxton, G. D., & Franks, N. R. (2002). Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology, 218, 1–11.

    Article  MathSciNet  Google Scholar 

  • Datta, S. B., & Beauchamp, G. (1991). Effects of Group Demography on Dominance Relationships among Female Primates .1. Mother-Daughter and Sister-Sister Relations. American Naturalist., 138, 201–226.

    Google Scholar 

  • Deneubourg, J. L., & Goss, S. (1989). Collective patterns and decision-making. Ethology Ecology and Evolution, 1, 295–311.

    Article  Google Scholar 

  • Deneubourg, J. L., Goss, S., Franks, N., & Pasteels, J. M. (1998). The blind leading the blind: Modelling chemically mediated army ant raid patterns. Journal of Insect behaviour, 2, 719–725.

    Article  Google Scholar 

  • Dingemanse, N. J., & Goede, P. d. (2004). The relation between dominance and exploratory behavior is context-dependent in wild great tits. Behavioral Ecology, 15(6), 1023–1030.

    Article  Google Scholar 

  • Drews, C. (1993). The concept and definition of dominance in animal behaviour. Behaviour, 125, 283–313.

    Article  Google Scholar 

  • Ellis, L. (1991). A biosocial theory of social stratification derived from the concepts of pro/antisociality and r/K selection. Politics and the Life Sciences, 10, 5–44.

    Article  Google Scholar 

  • Enquist, B. J., & Niklas, K. J. (2001). Invariant scaling relations across tree-dominated communities. Nature, 410, 655–660.

    Article  Google Scholar 

  • Enquist, B. J., West, G. B., Charnov, E. L., & Brown, J. H. (1999). Allometric scaling of production and life-history variation in vascular plants. Nature, 401, 907–911.

    Article  Google Scholar 

  • Franks, N. R., Gomez, N., Goss, S., & Deneubourg, J.-L. (1991). The blind leading the blind in army ant raiding patterns: Testing a model of self-organization (Hymenopter: Formicidae). Journal of Insect Behaviour, 4, 583–607.

    Article  Google Scholar 

  • Gautrais, J., Theraulaz, G., Deneubourg, J. L., & Anderson, C. (2002). Emergent polyethism as a consequence of increased colony size in insect societies. Journal of Theoretical Biology, 215, 363–373.

    Article  Google Scholar 

  • Goldberg, T. L., & Wrangham, R. W. (1997). Genetic correlates of social behaviour in wild chimpanzees: Evidence from mitochondrial DNA. Animal Behaviour, 54, 559–570.

    Article  Google Scholar 

  • Goodall, J. (1986). The chimpanzees of Gombe: Patterns of behaviour. Cambridge, MA and London: Belknapp Press of Harvard University Press.

    Google Scholar 

  • Gueron, S., Levin, S. A., & Rubenstein, D. I. (1996). The dynamics of herds: From individuals to aggregations. Journal of Theoretical Biology, 182, 85–98.

    Article  Google Scholar 

  • Guhl, A. M. (1968). Social inertia and social stability in chickens. Animal Behaviour, 16, 219–232.

    Google Scholar 

  • Hamilton, W. D. (1971). Geometry for the selfish herd. Journal of Theoretical Biology, 31, 295–311.

    Article  Google Scholar 

  • Hemelrijk, C. K. (1996). Dominance interactions, spatial dynamics and emergent reciprocity in a virtual world. In P. Maes, M. J. Mataric, J.-A. Meyer, J. Pollack, & S. W. Wilson (Eds.), Proceedings of the fourth international conference on simulation of adaptive behavior (Vol. 4, pp. 545–552). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Hemelrijk, C.K. (1998, August 17–21). Risk sensitive and ambiguity reducing dominance interactions in a virtual laboratory. In R. Pfeifer, B. Blumberg, J.-A. Meyer, & S. W. Wilson (Eds.), From animals to animals 5, proceedings of the fifth international conference on simulation on adaptive behavior (pp. 255–262), Zurich, Switzerland. Cambridge, MA: MIT Press..

    Google Scholar 

  • Hemelrijk, C. K. (1999a). Effects of cohesiveness on intersexual dominance relationships and spatial structure among group-living virtual entities. In D. Floreano, J.-D. Nicoud, & F. Mondada (Eds.), Advances in artificial life. Fifth European conference on artificial life. (Lecture Notes in Artificial Intelligence, 1674) (pp. 524–534). Berlin: Springer.

    Google Scholar 

  • Hemelrijk, C. K. (1999b). An individual-oriented model on the emergence of despotic and egalitarian societies. Proceedings of the Royal Society of London B: Biological Sciences, 266, 361–369.

    Article  Google Scholar 

  • Hemelrijk, C. K. (2000). Towards the integration of social dominance and spatial structure. Animal Behaviour, 59, 1035–1048.

    Article  Google Scholar 

  • Hemelrijk, C. K. (2002a). Self-organising properties of primate social behaviour: A hypothesis on intersexual rank-overlap in chimpanzees and bonobos. In C. Soligo, G. Anzenberger, & R. D. Martin (Eds.), Primatology and anthropology: Into the third millennium (pp. 91–94). New York: Wiley.

    Google Scholar 

  • Hemelrijk, C. K. (2002b). Understanding social behaviour with the help of complexity science. Ethology, 108, 655–671.

    Article  Google Scholar 

  • Hemelrijk, C. K., Wantia, J., & Daetwyler, M. (2003). Female Co-dominance in a virtual world: Ecological, cognitive, social and sexual causes. Behaviour, 140, 1247–1273.

    Article  Google Scholar 

  • Hemelrijk, C. K. (Ed.). (2005). Self-organisation and evolution of social systems. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hemelrijk, C. K., & Hildenbrandt, H. (2008). Self-organized shape and frontal density of fish schools. Ethology, 114, 245–254.

    Article  Google Scholar 

  • Hemelrijk, C. K., Hildenbrandt, H., Reinders, J., & Stamhuis, E. J. (2010). Emergence of oblong school shape: Models and empirical data of fish. Ethology, 116, 1099–1112.

    Article  Google Scholar 

  • Hemelrijk, C. K., & Hildenbrandt, H. (2012). Schools of fish and flocks of birds: Their shape and internal structure by self-organization. Interface Focus, 2, 726–737. https://doi.org/10.1098/rsfs.2012.0025

    Article  Google Scholar 

  • Hemelrijk, C. K., & Kunz, H. (2005). Density distribution and size sorting in fish schools: An individual-based model. Behavioral Ecology, 16, 178–187.

    Article  Google Scholar 

  • Hemelrijk, C. K., Meier, C. M., & Martin, R. D. (1999). ‘Friendship’ for fitness in chimpanzees? Animal Behaviour, 58, 1223–1229.

    Article  Google Scholar 

  • Hemelrijk, C. K., Meier, C. M., & Martin, R. D. (2001). Social positive behaviour for reproductive benefits in primates? A response to comments by Stopka et al. (2001). Animal Behaviour, 61, F22–F24.

    Google Scholar 

  • Hemelrijk, C. K., van Laere, G. J., & van Hooff, J. (1992). Sexual exchange relationships in captive chimpanzees? Behavioural Ecology and Sociobiology, 30, 269–275.

    Article  Google Scholar 

  • Hemelrijk, C. K., van Zuidam, L., & Hildenbrandt, H. (2015). What underlies waves of agitation in starling flocks. Behavioural Ecology and Sociobiology, 69, 755–764. https://doi.org/10.1007/s00265-015-1891-3

    Article  Google Scholar 

  • Hemelrijk, C. K., & Wantia, J. (2005). Individual variation by self-organisation: a model. Neuroscience and Biobehavioral Reviews, 29, 125–136.

    Article  Google Scholar 

  • Hemelrijk, C. K., Wantia, J., & Isler, K. (2008). Female dominance over males in primates: Self-organisation and sexual dimorphism. PloS One, 3, e2678.

    Article  Google Scholar 

  • Hildenbrandt, H., Carere, C. C., & Hemelrijk, C. K. (2010). Self-organized aerial displays of thousands of starlings: A model. Behavioural Ecology, 21(6), 1349–1359.

    Article  Google Scholar 

  • Hogeweg, P., & Hesper, B. (1983). The ontogeny of interaction structure in bumble bee colonies: A MIRROR model. Behavioral Ecology and Sociobiology, 12, 271–283.

    Article  Google Scholar 

  • Hogeweg, P., & Hesper, B. (1985). Socioinformatic processes: MIRROR Modelling methodology. Journal of Theoretical Biology, 113, 311–330.

    Article  Google Scholar 

  • Honk, C. v., & Hogeweg, P. (1981). The ontogeny of the social structure in a captive Bombus terrestris colony. Behavioral Ecology and Sociobiology, 9, 111–119.

    Article  Google Scholar 

  • Hsu, Y., Earley, R. L., & Wolf, L. L. (2006). Modulation of aggressive behaviour by fighting experience: mechanisms and contest outcomes. Biological Reviews, 81, 33–74.

    Article  Google Scholar 

  • Huse, G., Railsback, S., & Ferno, A. (2002). Modelling changes in migration pattern in herring: collective behaviour and numerical domination. Journal of Fish Biology, 60, 571–582.

    Article  Google Scholar 

  • Huth, A., & Wissel, C. (1992). The simulation of the movement of fish schools. Journal of Theoretical Biology, 156, 365–385.

    Article  Google Scholar 

  • Huth, A., & Wissel, C. (1994). The simulation of fish schools in comparison with experimental data. Ecological Modelling, 75/76, 135–145.

    Article  Google Scholar 

  • Inada, Y., & Kawachi, K. (2002). Order and flexibility in the motion of fish schools. Journal of Theoretical Biology, 214, 371–387.

    Article  Google Scholar 

  • Itani, J. (1954). The monkeys of Mt. Takasaki. Tokyo: Kobunsha.

    Google Scholar 

  • Jeanson, R., et al. (2005). Self-organized aggregation in cockroaches. Animal Behaviour, 69, 169–180.

    Article  Google Scholar 

  • Klimley, A. P. (1985). Schooling in Sphyrna lewini, a species with low risk of predation: a non-egalitarian state. Zeitschrift fürTierpsychology, 70, 279–319.

    Google Scholar 

  • Koolhaas, J. M., de Boer, S. F., Buwalda, B., van der Vegt, B. J., Carere, C., & Groothuis, A. G. G. (2001). How and why coping systems vary among individuals. In D. M. Broom (Ed.), Coping with challenge. Welfare including humans. Berlin: Dahlem University Press.

    Google Scholar 

  • Krause, J. (1993). The effect of ‘Schreckstoff’ on the shoaling behaviour of the minnow: a test of Hamilton’s selfish herd theory. Animal Behaviour, 45, 1019–1024.

    Article  Google Scholar 

  • Krause, J., & Tegeder, R. W. (1994). The mechanism of aggregation behaviour in fish shoals: Individuals minimize approach time to neighbours. Animal Behaviour, 48, 353–359.

    Article  Google Scholar 

  • Kummer, H. (1974). Rules of dyad and group formation among captive baboons (Theropithecus gelada) (pp. 129–160). Basel: S. Karger.

    Google Scholar 

  • Kunz, H., & Hemelrijk, C. K. (2003). Artificial fish schools: Collective effects of school size, body size, and body form. Artificial Life, 9, 237–253.

    Article  Google Scholar 

  • Kunz, H., Züblin, T., & Hemelrijk, C. K. (2006). On prey grouping and predator confusion in artificial fish schools. In L. M. Rocha et al. (Eds.), Proceedings of the tenth international conference of artificial life (pp. 365–371). Cambridge, MA: MIT Press.

    Google Scholar 

  • Lee, S. H. (2006). Predator’s attack-induced phase-like transition in prey flock. Physics Letters A, 357, 270–274.

    Article  Google Scholar 

  • Mazur, A. (1985). A biosocial model of status in face-to face primate groups. Social Forces, 64(2), 377–402.

    Article  Google Scholar 

  • Meier, C., Hemelrijk, C. K., & Martin, R. D. (2000). Paternity determination, genetic characterization and social correlates in a captive group of chimpanzees (Pan troglodytes). Primates, 41, 175–183.

    Article  Google Scholar 

  • Moritz, R. F. A., Kryger, P., & Allsopp, M. H. (1996). Competition for royalty in bees. Nature, 384(6604), 31.

    Article  Google Scholar 

  • Nottestad, L., & Axelsen, B. E. (1999). Herring schooling manoeuvres in response to killer whale attacks. Canadian Journal of Zoology-Revue Canadienne de Zoologie, 77, 1540–1546.

    Article  Google Scholar 

  • Oboshi, T., Kato, S., Mutoh, A., & Itoh, H. (2003). Collective or scattering: evolving schooling behaviors to escape from predator. In R. K. Standish, M. Bedau, & H. A. Abbass (Eds.), Artificial life VIII (pp. 386–389). Cambridge, MA: MIT Press.

    Google Scholar 

  • Oster, G. F., & Wilson, E. O. (1978). Caste and ecology in social insects. Princeton: Princeton University Press.

    Google Scholar 

  • Pagel, M., & Dawkins, M. S. (1997). Peck orders and group size in laying hens: ‘future contracts’ for non-aggression. Behavioural Processes, 40, 13–25.

    Google Scholar 

  • Parrish, J. K. (1993). Comparison of the hunting behavior of 4 piscine predators attacking schooling prey. Ethology, 95, 233–246.

    Article  Google Scholar 

  • Parrish, J. K., & Viscido, S. V. (2005). Traffic rules of fish schools: A review of agent-based approaches. In C. K. Hemelrijk (Ed.), Self-organisation and the evolution of social behaviour (pp. 50–80). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Pfeifer, R., & Scheier, C. (1999). Understanding intelligence. Cambridge, MA: MIT Press.

    Google Scholar 

  • Pitcher, T. J., & Wyche, C. J. (1983). Predator avoidance behaviour of sand-eel schools: Why schools seldom split? In D. L. G. Noakes, B. G. Lindquist, G. S. Helfman, & J. A. Ward (Eds.), Predators and prey in fishes (pp. 193–204). Dordrecht: Dr. W. Junk Publications.

    Chapter  Google Scholar 

  • Post, D. J. v. d., Franz, M., & Laland, K. N. (2016). Skill learning and the evolution of social learning mechanisms. BMC Evolutionary Biology, 16, 166.

    Article  Google Scholar 

  • Preuschoft, S., Paul, A., & Kuester, J. (1998). Dominance styles of female and male Barbary macaques (Macaca sylvanus). Behaviour, 135, 731–755.

    Article  Google Scholar 

  • Procaccini, A., Orlandi, A., Cavagna, A., Giardiina, I., Zoratto, F., Santucci, D., et al. (2011). Propagating waves in starling, Sturnus vulgaris, flocks under predation. Animal Behaviour, 82, 759–765. https://doi.org/10.1016/j.anbehav.2011.07.006

    Article  Google Scholar 

  • Puga-Gonzalez, I., Butovskaya, M., Thierry, B., & Hemelrijk, C. K. (2014). Empathy versus parsimony in understanding post-conflict affiliation in monkeys: model and empirical data. PloS One, 9, e91262. https://doi.org/10.1371/journal.pone.0091262

    Article  Google Scholar 

  • Puga-Gonzalez, I., Hildenbrandt, H., & Hemelrijk, C. K. (2009). Emergent patterns of social affiliation in primates, a model. PLoS Computational Biology, 5, e1000630. https://doi.org/10.1371/journal.pcbi.1000630

    Article  Google Scholar 

  • Ramos-Fernández, G., Boyer, D., & Gómez, V. P. (2006). A complex social structure with fission-fusion properties can emerge from a simple foraging model. Behavioral Ecology and Sociobiology, 60(4), 536–549.

    Article  Google Scholar 

  • Resnick, M. (1994). Turtles, termites and traffic jams: Explorations in massively parallel microworlds. Cambridge, MA: MIT Press.

    Google Scholar 

  • Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. Computers and Graphics, 21, 25–36.

    Article  Google Scholar 

  • Robinson, G. E. (1998). From society to genes with the honey bee. American Scientist, 86, 456–462.

    Article  Google Scholar 

  • Robinson, G. E., & Page, R. E. (1988). Genetic determination of guarding and undertaking in honey-bee colonies. Nature, 333, 356–358.

    Article  Google Scholar 

  • Romey, W. L. (1995). Position preferences within groups: do whirligigs select positions which balance feeding opportunities with predator avoidance? Behavioral Ecology and Sociobiology, 37, 195–200.

    Article  Google Scholar 

  • Rosenblum, L. A., & Nadler, R. D. (1971). The ontogeny of sexual behavior in male bonnet macaques. In D. H. Ford (Ed.), Influence of hormones on the nervous system (pp. 388–400). Basel: Karger.

    Google Scholar 

  • Seyfarth, R. M. (1977). A model of social grooming among adult female monkeys. Journal of Theoretical Biology, 65, 671–698.

    Article  Google Scholar 

  • Smuts, B. B. (1987). Gender, aggression and influence. In B. B. Smuts, D. L. Cheney, R. M. Seyfarth, R. W. Wrangham, & T. T. Struhsaker (Eds.), Primate societies (pp. 400–412). Chicago: Chicago University Press.

    Google Scholar 

  • Solé, R. V., Bonabeau, E., Delgado, J., Fernádez, P., & Marín, J. (2001). Pattern formation and optimization in army ant raids. Artificial Life, 6, 219–226.

    Article  Google Scholar 

  • Stanford, C. B. (1996). The hunting ecology of wild chimpanzees: Implications for the evolutionary ecology of Pliocene hominids. American Anthropologist, 98, 96–113.

    Article  Google Scholar 

  • Stanford, C. B. (1998). The social behaviour of chimpanzees and bonobos. Current Anthropology, 39, 399–420.

    Article  Google Scholar 

  • Stroebe, K., Nijstad, B. A., & Hemelrijk, C. K. (2016). Female Dominance in Human Groups: Effects of sex ratio and conflict level. Social Psychological and Personality Science, 8, 1–10. https://doi.org/10.1177/1948550616664956

    Google Scholar 

  • Sumpter, D. J. T. (2010). Collective animal behavior. Princeton and Oxford: Princeton University Press.

    Book  MATH  Google Scholar 

  • te Boekhorst, I. J. A., & Hogeweg, P. (1994a). Effects of tree size on travelband formation in orang-utans: Data-analysis suggested by a model. In R. A. Brooks & P. Maes (Eds.), Artificial life (Vol. IV, pp. 119–129). Cambridge, MA: The MIT Press.

    Google Scholar 

  • te Boekhorst, I. J. A., & Hogeweg, P. (1994b). Selfstructuring in artificial ‘CHIMPS’ offers new hypotheses for male grouping in chimpanzees. Behaviour, 130, 229–252.

    Article  Google Scholar 

  • Theraulaz, G., Bonabeau, E., & Deneubourg, J.-L. (1998). Threshold reinforcement and the regulation of division of labour in social insects. Proceedings of the Royal Society of London B, 265, 327–333.

    Article  MATH  Google Scholar 

  • Thierry, B. (1990a). Feedback loop between kinship and dominance: The macaque model. Journal of Theoretical Biology, 145, 511–521.

    Article  Google Scholar 

  • Thierry, B. (1990b). The state of equilibrium among agonistic behavior patterns in a group of Japanese macaques (Macaca fuscata). Comptes rendus de l’Académie des sciences. Série III, Sciences de la vie, 310, 35–40.

    Google Scholar 

  • Thierry, B., Gauthier, C., & Peignot, P. (1990). Social grooming in Tonkean macaques (Macaca tonkeana). International Journal of Primatology, 11, 357–375.

    Article  Google Scholar 

  • Trivers, R. L. (1971). The evolution of reciprocal altruism. Quarterly Review of Biology, 46, 35–57.

    Article  Google Scholar 

  • Tutin, C. E. G. (1980). Reproductive behaviour of wild chimpanzees in the Gombe National Park. Journal of Reproduction and Fertility. Supplement, 28, 43–57.

    Google Scholar 

  • Ulbrich, K., Henschel, J. R., Jeltsch, F., & Wissel, C. (1996). Modelling individual variability in a social spider colony (Stegodyphus dumicola: Eresidae) in relation to food abundance and its allocation. In: Revue suisse de Zoologie (Proceedings of the XIIIth International Congress of Arachnology, Geneva, 3–8 September 1995), hors série, 1, pp. 661–670.

    Google Scholar 

  • van Schaik, C. P. (1989). The ecology of social relationships amongst female primates. In V. Standen & G. R. A. Foley (Eds.), Comparative socioecology, the behavioural ecology of humans and other mammals (pp. 195–218). Oxford: Blackwell.

    Google Scholar 

  • van Schaik, C. P., & van Hooff, J. A. R. A. M. (1983). On the ultimate causes of primate social systems. Behaviour, 85, 91–117.

    Article  Google Scholar 

  • Verbeek, M. E. M., de Goede, P., Drent, P. J., & Wiepkema, P. R. (1999). Individual behavioural characteristics and dominance in aviary groups of great tits. Behaviour, 136, 23–48.

    Article  Google Scholar 

  • Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., & Shochet, O. (1995). Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 75, 1226–1229.

    Article  MathSciNet  Google Scholar 

  • Wantia, J. (2007). Self-organised dominance relationships: A model and data of primates. In Wiskunde en Natuurwetenschappen (p. 115). Groningen: Rijksuniversiteit Groningen.

    Google Scholar 

  • Wilkinson, G. S. (1988). Reciprocal altruism in bats and other mammals. Ethology and Sociobiology, 9, 85–100.

    Article  Google Scholar 

  • Yerkes, R. M. (1940). Social behavior of chimpanzees: Dominance between mates in relation to sexual status. Journal of Comparative Psychology, 30, 147–186.

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Andreas Flache and Rineke Verbrugge for comments on an earlier draft. I thank Daan Reid for correcting the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Hemelrijk .

Editor information

Editors and Affiliations

Further Reading

Further Reading

For further reading I recommend the book on self-organisation in biological systems by Camazine et al. (2001). This is an extensive introduction to almost all topics treated above and more (with the exception of task division and social systems of primates). Furthermore, new extensions of a number of the models are treated by Sumpter (2010). The above-mentioned book by Camazine and co-authors is also a good choice for teaching purposes, in addition to the well-written book by Resnick (1994). This latter book has been used in secondary schools and teaches to think in terms of complexity and self-organisation in general. For more advanced readers, I recommend “Self-organisation and Evolution of Social Systems” (Hemelrijk 2005). This is an edited book and contains recent articles on modelling of social systems, including those of humans.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hemelrijk, C. (2017). Simulating Complexity of Animal Social Behaviour. In: Edmonds, B., Meyer, R. (eds) Simulating Social Complexity. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-66948-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66948-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66947-2

  • Online ISBN: 978-3-319-66948-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics