High Approximation for Banach Space Valued Functions

  • George A. AnastassiouEmail author
Part of the Studies in Computational Intelligence book series (SCI, volume 734)


Here we study quantitatively the high degree of approximation of sequences of linear operators acting on Banach space valued differentiable functions to the unit operator.


  1. 1.
    G.A. Anastassiou, Moments in Probability and Approximation Theory, Pitman Research Notes in Math, vol. 287 (Longman Science & Technology, Harlow, UK, 1993)Google Scholar
  2. 2.
    G.A. Anastassiou, Lattice homomorphism—Korovkin type inequalities for vector valued functions. Hokkaido Math. J. 26, 337–364 (1997)Google Scholar
  3. 3.
    G.A. Anastassiou, High order Approximation theory for Banach space valued functions. Rev. Anal. Numer. Theor. Approx. (2017) (Accepted)Google Scholar
  4. 4.
    T. Nishishiraho, Bernstein-type approximation processes for vector-valued functions. Acta Math. Hung. 84(1–2), 149–158 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    R. Paltanea, Vector variants of some approximation theorems of Korovkin and of Sendov and Popov. Constructive Theory of Functions (DARBA, Sofia, 2003), pp. 366–373Google Scholar
  6. 6.
    R. Paltanea, Approximation of functions in Banach spaces using linear and positive operators, in Proceedings of RoGer Seminar 2004 (Mediamira Science Publisher, Cluj-Napoca, 2004), pp. 5–20Google Scholar
  7. 7.
    T. Popoviciu, Sur l’approximation des Fonctions Convexes d’ordre Superieur, Vol. X. (Mathematica, Cluj, Romania, 1935), pp. 49–54Google Scholar
  8. 8.
    G.E. Shilov, Elementary Functional Analysis (Dover Publications Inc, New York, 1996)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of MemphisMemphisUSA

Personalised recommendations