Topology and Topophilia: Bachelardian Space Between Philosophy and Poetics

Chapter
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 39)

Abstract

Philosophers have defined Gaston Bachelard as a “Janus-faced person”, for his eyes, like those of the ancient Latin divinity, seem to explore two different directions, ranging from epistemology to poetics. The French scholar equally devoted his studies to these fields, developing an extremely original perspective, which inspired new interpretations of the subject of contemporary science. This peculiarity of the Bachelardian thought must also be kept in mind when examining his reflection on the concept of space, which is analyzed from the different but complementary points of view of epistemology and poetics. Bachelard’s philosophical analysis overcomes the naïve concept of space as a uniform extension, and analyses its mathematical properties, thanks to scientific speculation; while it makes use of poetical reflection to describe its emotional properties. The first pages of Le Rationalisme appliqué (1949) propose the famous “table” providing the theoretical coordinates of Bachelard’s “applied rationalism and technical materialism”, and they reconsider some traditional categories and philosophical movements. The French scholar refers to this table as a “philosophical topology”, using a problematic definition which has been widely discussed and criticized. This contribution attempts a clarification of this “philosophical topology”, by examining some aspects of its genesis, and pointing out how Bachelard, consistently with his theoretical statements, does not simply carry out a reflection on space through philosophy. Indeed, he also considers the other side of the question, proving that mathematical knowledge may affect the understanding of philosophy. The chronology of Bachelard’s works witnesses an alternation of epistemological and poetical publications, thus proving that the distinction between the two fields does not mark a boundary between two consecutive phases of his reflection, but it highlights the constant articulation of his research. This statement underlies the second part of our itinerary, which examines the “dialectics of the outside and the inside” through which La poétique de l’espace (1957) reverses the fundamental geometrical opposition between outside and inside, typical of the traditional Euclidean common sense.

References

  1. Abramo, M. R. (2002). Gaston Bachelard e le fisiche del Novecento. Naples: Guida.Google Scholar
  2. Bachelard, G. (1928). Essai sur la connaissance approchée (6th ed., 1987). Paris: Vrin.Google Scholar
  3. Bachelard, G. (1929). La valeur inductive de la Relativité. Paris: Vrin.Google Scholar
  4. Bachelard, G. (1934). Le nouvel esprit scientifique. Paris: Puf (English translation: The new scientific spirit. Beacon Press, Boston 1984; Italian translation: Il nuovo spirito scientifico. Laterza, Rome-Bari 1978).Google Scholar
  5. Bachelard, G. (1936). Le Surrationalisme. Inquisitions, n. 1, june.Google Scholar
  6. Bachelard, G. (1937). L’expérience de l’espace dans la physique contemporaine. Paris: Alcan.Google Scholar
  7. Bachelard, G. (1949). Le rationalisme appliqué (3rd ed., 1966). Paris: Puf.Google Scholar
  8. Bachelard, G. (1957). La poétique de l’espace. Paris: Puf. (English translation: The poetics of space, Beacon Press, Boston 1994).Google Scholar
  9. Bachelard, G. (1972). L’engagement rationaliste. Paris: Puf.Google Scholar
  10. Bonicalzi, F. (2007). Leggere Bachelard. Le ragioni del sapere. Milan: Jaca Book.Google Scholar
  11. Brunschvicg, L. (1912). Les étapes de la philosophie mathématique. Paris: Alcan.Google Scholar
  12. Geymonat, L., & Redondi, P. (1978). Introduzione, in Bachelard (1934) (Italian translation).Google Scholar
  13. Heidegger, M. (1927), Sein und Zeit. Tübingen: Max Niemeyer (Engl. trans. Being and time, Harper & Row, New York 1962.Google Scholar
  14. Hugo, V. (1831), Notre-Dame de Paris. Paris: Gosselin (Engl. trans. The Hunchback of Notre-Dame, Wordsworth, Ware, Hertfordshire 1998).Google Scholar
  15. Hyppolite, J. (1956) “Commentaire parlé sur la Verneinung de Freud”, La psychanalyse, n. 1.Google Scholar
  16. Lecourt, D. (1969), L’Épistémologie historique de Gaston Bachelard (11th ed., 2002). Paris: Vrin.Google Scholar
  17. Martin, R. (1974), Bachelard et les mathématiques in Barreau, H., et al. (1974), Bachelard. Colloque de Cerisy, Union générale d’éditions, Paris.Google Scholar
  18. Michaux, H. (1952). Nouvelles de l’étranger. Paris: Mercure de France.Google Scholar
  19. Palombi, F. (2003), La stella e l’intero. La ricerca di Gian-Carlo Rota tra fenomenologia e matematica. Torino: Bollati Boringhieri (Engl. trans. The Star and the Whole. Gian-Carlo Rota on Mathematics and Phenomenology, Taylor & Francis, Boca Raton, London, New York, 2011).Google Scholar
  20. Palombi, F. (2004), Una funzione birichina: attività razionalista e matematica nell’epistemologia di Gaston Bachelard. In F. Bonicalzi & C. Vinti (Eds.), Ri-cominciare. Percorsi e attualità dell’opera di Gaston Bachelard. Milan: Jaca Book.Google Scholar
  21. Palombi, F. (2009). Jacques Lacan. Roma: Carocci.Google Scholar
  22. Palombi, F. (2012). Provocazioni geometriche: spazio e materia in Gaston Bachelard. In F. Bonicalzi, et al. (Eds.), Bachelard e le ‘provocazioni’ della materia (pp. 133–142). Genova: il nuovo Melangolo.Google Scholar
  23. Poincaré, H. (1902), La science et l’hypothèse. Paris: Flammarion (Engl. trans. Science and hypothesis, Walter Scott, New York 1905).Google Scholar
  24. Redondi, P. (1978). Epistemologia e storia della scienza. Feltrinelli, Milan: Le svolte teoriche da Duhem a Bachelard.Google Scholar
  25. Supervielle, J. (1925), Gravitations. Paris: Gallimard.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of HumanitiesUniversity of CalabriaArcavacata di RendeItaly

Personalised recommendations