Skip to main content

Influence of Preterm Birth, BPD and Lung Inhomogeneity on Respiratory System Impedance – Model Studies

  • Conference paper
  • First Online:
Recent Developments and Achievements in Biocybernetics and Biomedical Engineering (PCBBE 2017)

Abstract

The influence of preterm birth, bronchopulmonary dysplasia (BPD) and lung inhomogeneity on respiratory system impedance (RSI) was studied. The simulation of spontaneous breathing in full term newborns (FT), very low birth weight (VLBW) and extremely low birth weight (ELBW) preterm infants was carried out using a developed linear RLC respiratory system model. Besides BPD, four types of lung inhomogeneity: (1) one-lung obstruction (OBSTR), (2) one-lung restriction (RESTR), (3) one-lung obstructive-restrictive disturbance (OBSTR-RESTR I), (4) bilateral obstructive-restrictive disturbance (OBSTR-RESTR II), with obstruction of one lung and restriction of the second, were studied.

The impact of preterm birth on infant RSI was stronger than the BPD impact. The differences in the real and imaginary parts of RSI, between full term, VLBW and ELBW infants, were much greater than between preterm infants with and without BPD. The shift of resonant frequency between full terms and ELBW amounted to 20 Hz, but between ELBW with and without BPD only 5 Hz.

The bilateral obstructive-restrictive lung inhomogeneity (OBSTR-RESTR II) with obstruction of one lung \(\left( R_{1}=10\cdot R_{2}\right) \) and restriction of the second lung \(\left( C_{2}=0.1\cdot C_{1}\right) \), appeared to have the most adverse influence on RSI. In ELBW with OBSTR-RESTR II, both the real and imaginary parts of RSI increased several times compared to healthy ELBW.

However, severe one-lung obstruction \(\left( R_{1}=10\cdot R_{2}\right) \) or one-lung restriction \(\left( C_{1}=0.1\cdot C_{2}\right) \) in preterm infants prompted significant increases of RSI compared to healthy infants. The 20% difference in airway resistance \(\left( R_{1}=1.2\cdot R_{2}\right) \) or lung compliance \(\left( C_{1}=1.2\cdot R_{2}\right) \) between the left and right lung seemed to be clinically unimportant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moss, T.J.M.: The respiratory consequences of preterm birth. Proc. Aust. Physiol. Soc. 36, 23–28 (2005)

    Google Scholar 

  2. Ward, R.M., Beachy, J.C.: Neonatal complications following preterm birth. BJOG: Int. J. Obstet. Gynecol. 110 (Suppl. 20), 8–16 (2003)

    Google Scholar 

  3. Stoll, B.J., Hansen, N.I., Bell, E.F., Shankaran, S., Laptook, A.R., Walsh, M.C., Hale, E.C., Newman, N.S., Schibler, K., Carlo, W.A., Kennedy, K.A., Poindexter, B.B., Finer, N.N., Ehrenkranz, R.A., Duara, S., Sánchez, P.J., O’Shea, T.M., Goldberg, R.N., Van Meurs, K.P., Faix, R.G., Phelps, D.L., Frantz, I.D., Watterberg, K.L., Saha, S., Das, A., Higgins, R.D.: Neonatal outcomes of extremely preterm infants from the NICHD neonatal research network. Pediatrics 126, 443–456 (2010). doi:10.1542/peds.2009-2959

    Article  Google Scholar 

  4. Lopez, E.S., Rodríguez, E.M., Navarro, C.R., Sánchez-Luna, M.: Initial respiratory management in preterm infants and bronchopulmonary dysplasia. Clin. Sci. 66, 823–827 (2011)

    Google Scholar 

  5. Kessel, I., Waisman, D., Barnet-Grinnes, O., Ben Ari, T.Z., Rotschild, A.: Benefits of high frequency oscillatory ventilation for premature infants. IMAJ 12, 144–149 (2010)

    Google Scholar 

  6. Brown, M.K., Di Blasi, R.M.: Mechanical ventilation of the premature neonate. Respir. Care 56, 1298–1313 (2011)

    Article  Google Scholar 

  7. Finer, N.N., Waldemar, A., Carlo, W.A., Walsh, M.C., Rich, G.M.G., Laptook, A.R., Yoder, B.A., Faix, R.G., Das, A., Poole, W.K., Donovan, E.F., Newman, N.S., Ambalavanan, N., Frantz, I.D., Buchter, S., Sánchez, P.J., Kennedy, K.A., Laroia, N., Poindexter, B.B., Cotton, C.M., Van Meurs, K.P., Duara, S., Narendran, V., Sood, V.B., O’Shea, M., Bell, E.F., Bhandari, V., Watterberg, K.L., Higgins, R.D.: Early CPAP versus surfactant in extremely preterm infants. N. Engl. J. Med. 362, 1970–1979 (2010). doi:10.1056/NEJMoa0911783

    Article  Google Scholar 

  8. Garcia-Fernandez, J., Castro, L., Belda, F.J.: Ventilating the newborn and child. Curr. Anaesth. Crit. Care 21, 262–268 (2010)

    Article  Google Scholar 

  9. Steward, D.J.: Physiology applied to pediatric anasthesia. In: Critical Care of the Child, p. 168. Marinus Nijhoff Publishers, Dordrecht (1984)

    Google Scholar 

  10. Gappa, M., Pillow, J.J., Allen, J., Mayer, O., Stocks, J.: Lung function tests in neonates and infants with chronic lung disease: Lung and chest-wall mechanics. Pediatr. Pulmonol. 41, 291–317 (2006)

    Article  Google Scholar 

  11. Gutkowski, P.: Pulmonary function tests (PFT’s) in newborns and infants. Ukrainian Pulmonol. J. 3, 31–34 (2005)

    Google Scholar 

  12. Monte, L.F., Silva Filho, L.V., Miyoshi, M.H., Rozov, T.: Bronchopulmonary dysplasia. J. Pediatr. 81, 99–110 (2005)

    Article  Google Scholar 

  13. Schmalisch, G., Wilitzki, S., Roehr, C.C., Proquitte, H., Bührer, C.: Development of lung function in very low birth weight infants with or without bronchopulmonary dysplasia: longitudinal assessment during the first 15 months of corrected age. BMC Pediatr. 37, 1–9 (2012). doi:10.1186/1471-2431-12-37

    Google Scholar 

  14. Landry, S., Chan, T., Lands, L., Menzies, D.: Long-term impact of bronchopulmonary dysplasia on pulmonary function. Can. Resp. J. 18, 265–270 (2011)

    Google Scholar 

  15. Doyle, L.W., Faber, B., Callanan, C., Freezer, N., Ford, G.W., Davis, N.M.: Bronchopulmonary dysplasia in VLBW subjects and lung function in late adolescence. Pediatrics 118, 108–113 (2006)

    Article  Google Scholar 

  16. Bhandari, A., Panitch, H.B.: Pulmonary outcomes in bronchopulmonary dysplasia. In: Seminars in Perinatology. Elsevier, Amsterdam (2006). doi:10.1053/j.semperi.2006.05.009

  17. Jacob, S.V., Coates, A.L., Lands, L.: Long-term pulmonary sequelae of severe bronchopulmonary dysplasia. J. Pediatr. 133, 193–200 (1998)

    Article  Google Scholar 

  18. Aukland, S.M., Halvorsen, T., Fosse, K., Daltveit, A.K., Rosendahl, K.: High-resolution CT of chest in children and young adults who were born prematurely: findings in population based study. AJR 187, 1012–1018 (2006)

    Article  Google Scholar 

  19. Ehrenkranz, R.A., Walsh, M.C., Vohr, B.R., Jobe, A.H., Wright, L.L., Fanaroff, A.A., Wrage, L.A., Poole, K.: Validation of the National Institute of Health consensus definition of bronchopulmonary dysplasia. For the National Institutes of Child Health and Human Development Neonatal Research Network. Pediatrics 116, 1353–1360 (2005)

    Article  Google Scholar 

  20. Gien, J., Kinsella, J.P.: Pathogenesis and treatment of bronchopulmonary dysplasia. NIH public access author manuscript. Curr. Opin. Pediatr. 23, 305–313 (2011). doi:10.1097/MOP.0b013e328346577f

    Article  Google Scholar 

  21. Onland, W., Debray, T.P., Laughon, M.M., Miedema, M., Cools, F., Askie, L.M., Asselin, J.M., Calvert, S.A., Sherry, E., Courtney, S.E., Dani, C., Durand, D.J., Marlow, N., Peacock, J.L., Pillow, J.J., Soll, R.F., Thome, U.H., Truffert, P., Schreiber, M.D., Van Reempts, P., Vendettuoli, V., Vento, G., van Kaam, A.H., Moons, K.G., Offringa, M.: Clinical prediction models for bronchopulmonary dysplasia: a systematic review and external validation study. BMC Pediatr. 13, 20 (2013). doi:10.1186/1471-2431-13-207

    Article  Google Scholar 

  22. Trembath, A., Laughon, M.: Predictors of bronchopulmonary dysplasia. Clin. Perinatol. 39, 585–601 (2012). doi:10.1016/j.clp.2012.06.014

    Article  Google Scholar 

  23. Schmitd, M., Foitzik, B., Hochmuth, O., Schmalisch, G.: Computer simulation of the measured respiratory impedance in newborn infants and the effect of the measurement equipment. Med. Eng. Phys. 20, 220–228 (1998)

    Article  Google Scholar 

  24. Lumb, A.B., Nunn, J.F.: Nunn’s Applied Respiratory Physiology, 7th edn. Churchill Livingstone Elsevier, Edinburgh (2010)

    Google Scholar 

  25. Rolle, V.L., Hernández, A.I., Carrault, G., Samson, N., Praud, J.P.: A model of ventilation used to interpret newborn lamb respiratory signals. Artif. Intell. Med. 44, 201–19 (2008). doi:10.1016/j.artmed.2008.06.001

    Article  Google Scholar 

  26. Contoli, M., Bousquet, J., Fabbri, L.M., Magnussen, H., Rabe, K.F., Siafakas, N.M., Hamid, Q., Kraft, M.: The small airways and distal lung compartment in asthma and COPD: a time for reappraisal. Allergy 65, 141–151 (2010)

    Article  Google Scholar 

  27. Tulic, M.K., Christodoulopoulos, P., Hamid, Q.: Small airway inflammation in asthma. Respir. Res. 2, 333–339 (2001)

    Article  Google Scholar 

  28. Oczenski, W.: Ventilation of neonates and children. In: Werba, A., Andel, H. (eds.) Breathing and Mechanical Support, pp. 179–190. Wiley-Blackwell, New York (1997)

    Google Scholar 

  29. Gerhard, T., Bancalari, E.: Chestwall compliance in full-term and premature infants. Acta. Paediatr. Scand. 69, 359–364 (1980)

    Article  Google Scholar 

  30. Schmalisch, G., Grubba, K., Wauer, R.R.: Computer-aided interpretation of pulmonary parameters in newborn infants. Med. Biol. Eng. Comp. 34, 160–164 (1996)

    Article  Google Scholar 

  31. Lui, K., Lloyd, J., Ang, E., Rynn, M., Gupta, J.M.: Early changes in respiratory compliance and resistance during the development of bronchopulmonary dysplasia in the era of surfactant therapy. Pediatr. Pulmonol. 30, 282–290 (2000)

    Article  Google Scholar 

  32. Banner, M.J., Kirby, R.R., Gabrieli, A., Blanch, P.B., Layon, A.J.: Partially and totally unloading respiratory muscles based on real-time measurements of work of breathing. Clin. Approach Chest 106, 1835–1842 (1994)

    Google Scholar 

  33. Cabello, B., Mancebo, J.: Work of breathing. Intensive Care Med. 32, 1313–1314 (2006). doi:10.1007/s00134-006-0278-3

    Article  Google Scholar 

  34. Hülskamp, G., Lum, S., Stocs, J., Wade, A., Hoo, A., Costeloe, K., Hawdon, J., Deeptha, K., Pillow, J.J.: Association of prematurity, lung disease and body size with lung volume and ventilation inhomogeneity in unsedated neonates: a multicentre study. Thorax 64, 240–245 (2009). doi:10.1136/thx.2008.101758

    Article  Google Scholar 

  35. Latzin, P., Thamrin, C., Kraemer, R.: Ventilation inhomogeneities assessed by the multibreath washout (MBW) technique. Thorax 63, 98–99 (2008). doi:10.1136/thx.2007.085332

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Stankiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Stankiewicz, B., Darowski, M., Pałko, K.J. (2018). Influence of Preterm Birth, BPD and Lung Inhomogeneity on Respiratory System Impedance – Model Studies. In: Augustyniak, P., Maniewski, R., Tadeusiewicz, R. (eds) Recent Developments and Achievements in Biocybernetics and Biomedical Engineering. PCBBE 2017. Advances in Intelligent Systems and Computing, vol 647. Springer, Cham. https://doi.org/10.1007/978-3-319-66905-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66905-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66904-5

  • Online ISBN: 978-3-319-66905-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics