Skip to main content

Cryopreservation of Cells Encapsulated Within Nano-thin Polyelecrolyte Coatings

  • Conference paper
  • First Online:
Recent Developments and Achievements in Biocybernetics and Biomedical Engineering (PCBBE 2017)

Abstract

Cryopreservation is a method which enables to store the cells for a long time period and allows to obtain the appropriate amount of cells necessary for transplantation. Unfortunately, the cells isolated from organs like e.g. hepatocytes are susceptible to freezing damage. Encapsulation may be considered as a method allowing to protect cells during adverse freezing conditions.

Aim: Assesement of the usability of nano-thin semipermeable membrane coating shell as protective element during cryopreservation of the cells.

Materials and Methods: Liver cells, isolated from living donors (according to Bioethical Community protocol) or hepatoma cell line HepG2 were encapsulated within nano-thin poly-L-lysine/polyethylenoimine with incorporated fullerene (PLL/PEI+f) membrane or within standard alginate microcapsules. As a control group the cells were encapsulated The mitochondrial activity of cells was analyzed after 4 months cryopreservation using 5-diphenyltertrazolium bromide tetrazolium (MTT) test. The viability of cells was assessed utilizing flow cytometry during 8-day culture after thawing.

Results: The cells protected during cryopreservation by nanomembranes or microcapsules were after thawing in better condition than nonencapsulated cells. The mitochondrial activity expressed as absorbance was comparable in both types of encapsulation within nano-thin membranes or microcapsules in MTT test. The percentage share of viable cells in all tested groups was meanly 90%. Conclusions: Applied nanocoating did not delimit the viability of cryopreserved cells as compared to microencapsulation. The cryopreservation within nano-thin semipermeable membranes seems to be promising way to protect cells during long term storage in liquid nitrogen when minimizing the encapsulated transplant volume is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baddour, J.A., Sousounis, K., Tsonis, P.A.: Organ repair and regeneration: an overview. Birth Defects Res. C 96, 1–29 (2012). doi:10.1002/bdrc.21006

    Article  Google Scholar 

  2. Murua, A., Portero, A., Orive, G., Ma Hernndez, R., de Castro, M., Pedraz, J.L.: Cell microencapsulation technology: towards clinical application. J. Controlled Release 132, 76–83 (2008). doi:10.1016/j.jconrel.2008.08.010

    Article  Google Scholar 

  3. Yang, Y., Li, J., Pan, X., Phou, Z., Yu, X., Cao, H., Wang, Y., Li, L.: Co-culture with mesenchymal stem cells enhances metabolic functions of liver cells in bioartificial liver system. Biotechnol. Bioeng. 110, 958–968 (2013). doi:10.1002/bit.24752

    Article  Google Scholar 

  4. Yang, K.C., Wu, C.C., Kuo, Z.F., Yang, C.Y., Lin, F.H.: Intramedullary cavity as implantation site for bioartifical pancreas: preliminary in vivo study. Transplant Proc. 42, 2666–2668 (2010). doi:10.1016/j.transproceed.2010.04.027

    Article  Google Scholar 

  5. Lim, F., Sun, A.M.: Microencapsulated islets as bioartificial endocrine pancreas. Science 210(4472), 908–910 (1980)

    Article  Google Scholar 

  6. Bhaiji, T., Zhi, Z.L., Pickup, J.C.: Improving cellular function and immune protection via layer-by-layer nanocoating of pancreatic islet \(\beta \)-cell spheroids cocultured with mesenchymal stem cells. J. Biomed. Mater. Res. A 100, 1628–1636 (2012). doi:10.1002/jbm.a.34111

    Article  Google Scholar 

  7. Bulwan, M., Antosiak-Iwańska, M., Godlewska, E., Granicka, L.H., Zapotoczny, S., Nowakowska, M.: Chitosan-based nanocoatings for hypothermic storage of living cells. Macromol. Biosci. 13, 1610–1620 (2013). doi:10.1002/mabi.201300258

    Article  Google Scholar 

  8. Kizilel, S., Scavone, A., Liu, X., Nothias, J.M., Ostrega, D., Witkowski, P., Millis, M.: Encapsulation of pancreatic islets within nano-thin functional polyethylene glycol coatings for enhanced insulin secretion. Tissue Eng. Part A 16, 2217–2228 (2010). doi:10.1089/ten.TEA.2009.0640

    Article  Google Scholar 

  9. Dorris, A.C., Douglas, K.L., Tabrizian, M., Barrett, C.J.: Control of DNA incorporation into nanoparticles with poly(L-lysine) multilayers. Can. J. Chem. 86, 1085–1094 (2008). doi:10.1139/v08-162

    Article  Google Scholar 

  10. Mansouri, S., Merhi, Y., Winnik, F.M., Tabrizian, M.: Investigation of layer-by-layer assembly of polyelectrolytes on fully functional human red blood cells in suspension for attenuated immune response. Biomacromolecules 12, 585–592 (2011). doi:10.1021/bm101200c

    Article  Google Scholar 

  11. Stiegler, P.B., Stadlbauer, V., Halwachs, G., Schaffellner, S., Lackner, C., Hauser, O., Iberer, F., Tscheliessnigg, K.: Cryopreservation of insulin-producing cells microencapsulated in sodium cellulose sulfate. Transplant Proc. 38, 3026–3030 (2006)

    Article  Google Scholar 

  12. Tatsumi, K., Ohashi, K., Teramura, Y., Utoh, R., Kanegae, K., Watanabe, N., Mukobata, S., Nakayama, M., Iwata, H., Okano, T.: The non-invasive cell surface modification of hepatocytes with PEG-lipid derivatives. Biomaterials 33(3), 821–828 (2012). doi:10.1016/j.biomaterials.2011.10.016

    Article  Google Scholar 

  13. Teramura, Y., Iwata, H.: Bioartificial pancreas microencapsulation and conformal coating of islet of Langerhans. Adv. Drug Deliv. Rev. 62, 827–840 (2010). doi:10.1016/j.addr.2010.01.005

    Article  Google Scholar 

  14. Durkut, S., Elçin, A.E., Elçin, Y.M.: In vitro evaluation of encapsulated primary rat hepatocytes pre- and post-cryopreservation at \(-80\,^\circ \)C and in liquid nitrogen. Artif. Cells Nanomed. Biotechnol. 43, 50–61 (2015). doi:10.3109/21691401.2013.837476

    Article  Google Scholar 

  15. Stéphenne, X., Najimi, M., Sokal, E.M.: Hepatocyte cryopreservation: is it time to change the strategy? World J. Gastroenterol. 16(1), 1–14 (2010)

    Google Scholar 

  16. Guyomard, C., Rialland, L., Fremond, B., Chesne, C., Guillouzo, A.: Influence of alginate gel entrapment and cryopreservation on survival and xenobiotic metabolism capacity of rat hepatocytes. Toxicol. Appl. Pharmacol. 141(2), 349–356 (1996)

    Article  Google Scholar 

  17. Hang, H., Shi, X., Gu, G., Wu, Y., Gu, J., Ding, Y.: In vitro analysis of cryopreserved alginate-poly-L-lysine-alginate-microencapsulated human hepatocytes. Liver Int. 30(4), 611–622 (2010). doi:10.1111/j.1478-3231.2009.02197.x

    Article  Google Scholar 

  18. Schneider, S., Klein, H.H.: Preserved insulin secretion capacity and graft function of cryostored encapsulated rat islets. Regul. Pept. 166(1–3), 135–138 (2011). doi:10.1016/j.regpep.2010.10.005

    Article  Google Scholar 

  19. Haque, T., Chen, H., Ouyang, W., Martoni, C., Lawuyi, B., Urbanska, A.M., Prakash, S.: In vitro study of alginate-chitosan microcapsules: an alternative to liver cell transplants for the treatment of liver failure. Biotechnol. Lett. 27(5), 317–322 (2005)

    Article  Google Scholar 

  20. Stensvaag, V., Furmanek, T., Lønning, K., Terzis, A.J., Bjerkvig, R., Visted, T.: Cryopreservation of alginate-encapsulated recombinant cells for antiangiogenic therapy. Cell Transplant. 13(1), 35–44 (2004)

    Article  Google Scholar 

  21. Herrler, A., Eisner, S., Bach, V., Weissenborn, U., Beier, H.M.: Cryopreservation of spermatozoa in alginic acid capsules. Fertil. Steril. 85(1), 208–213 (2006)

    Article  Google Scholar 

  22. Inaba, K., Zhou, D., Yang, B., Vacek, I., Sun, A.M.: Normalization of diabetes by xeno-transplantation of cryopreserved microencapsulated pancreatic islets. Application of a New Strategy in islet banking. Transplantation 61, 175–179 (1996)

    Article  Google Scholar 

  23. Leung, A., Ramaswamy, Y., Munro, P., Lawrie, G., Nielsen, L., Trau, M.: Emulsion strategies in the microencapsulation of cells: pathways to thin coherent membranes. Biotechnol. Bioeng. 92(1), 45–53 (2005)

    Article  Google Scholar 

  24. Teramura, Y., Kaneda, Y., Iwata, H.: Islet-encapsulation in ultra-thin layer-by-layer membranes of poly(vinyl alcohol) anchored to poly(ethylene glycol)-lipids in the cell membrane. Biomaterials 28, 4818–4825 (2007)

    Article  Google Scholar 

  25. Wilson, J.T., Chaikof, E.L.: Challenges and emerging technologies in the immunoisolation of cells and tissues. Adv. Drug Deliv. Rev. 60(2), 124–145 (2008)

    Article  Google Scholar 

  26. Alexandre, E., Viollon-Abadie, C., David, P., Gandillet, A., Coassolo, P., Heyd, B., Mantion, G., Wolf, P., Bachellier, P., Jaeck, D., Richert, L.: Cryopreservation of adult human hepatocytes obtained from resected liver biopsies. Cryobiology 44(2), 103–113 (2002)

    Article  Google Scholar 

  27. Borkowska, M., Godlewska, E., Antosiak-Iwańska, M., Kinasiewicz, J., Strawski, M., Szklarczyk, M., Granicka, L.H.: Suitability of polyelectrolyte shells modyfied with fullerene derivate for immunoisolation of cells. Experimental study. J. Biomed. Nanotechnol. 8(6), 912–917 (2012)

    Article  Google Scholar 

  28. Antosiak-Iwańska, M., Sitarek, E., Sabat, M., Godlewska, E., Kinasiewicz, J., Weryński, A.: Isolation, banking, encapsulation and transplantation of different types of Langerhans islets. Pol. Arch. Med. Wewn. 119(5), 311–317 (2009)

    Google Scholar 

  29. Granicka, L.H., Antosiak-Iwańska, M., Godlewska, E., Strawski, M., Szklarczyk, M., Maranowski, B., Kowalewski, C., Wiśniewski, J.: Conformal nano-thin modified polyelectrolyte coatings for encapsulation of cells. Artif. Cells Blood Substit. Immobil. Biotechnol. 39(5), 274–280 (2011). doi:10.3109/10731199.2011.559645

    Article  Google Scholar 

  30. Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65(1–2), 55–63 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Antosiak-Iwańska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Antosiak-Iwańska, M., Godlewska, E., Kinasiewicz, J., Dudek, K., Kawiak, J., Granicka, L. (2018). Cryopreservation of Cells Encapsulated Within Nano-thin Polyelecrolyte Coatings. In: Augustyniak, P., Maniewski, R., Tadeusiewicz, R. (eds) Recent Developments and Achievements in Biocybernetics and Biomedical Engineering. PCBBE 2017. Advances in Intelligent Systems and Computing, vol 647. Springer, Cham. https://doi.org/10.1007/978-3-319-66905-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66905-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66904-5

  • Online ISBN: 978-3-319-66905-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics