Skip to main content

Processing and Analysis of EEG Signal for SSVEP Detection

  • Conference paper
  • First Online:
Recent Developments and Achievements in Biocybernetics and Biomedical Engineering (PCBBE 2017)

Abstract

The aim of the article is to provide a systematic presentation of basic tools that are most commonly used to analyze electroencephalography signals (EEG) in brain–computer interfaces for detection of steady-state visually evoked potentials (SSVEP). We use a database of EEG signals containing SSVEP and demonstrate the desirability of the use of selected methods, showing their benefits. Methods such as independent components analysis (ICA), frequency analysis (DFT), and time-frequency analysis (STFT) are presented. For SSVEP, the features of EEG signal should be stable with time. Short-Time Fourier Transform (STFT) allows to confirm this stability. Independent Component Analysis is used to extract pure SSVEP components. The advantages of each method are described and the obtained results are discussed. Further, source location by the use of low-resolution electromagnetic tomography algorithm is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cudo, A., Zabielska, E., Zapaa, D.: Brain-computer interfaces based on electroencephalography method. Studia Z Psychologii W KUL 18, 195–216 (2012)

    Google Scholar 

  2. Tadeusiewicz, R.: Neural Networks. RM Academic Publishing House, Warsaw (1993). (in Polish)

    Google Scholar 

  3. Durka, P.J., Kuś, R., Żygierewicz, J., Michalska, M., Milanowski, P., Łabęcki, M., Spustek, T., Laszuk, D., Duszyk, A., Kruszyński, M.: User-centered design of brain-computer interfaces: OpenBCI.pl and BCI Appliance. Bull. Pol. Acad. Sci. Techn. Sci. 60(3), 427–431 (2012)

    Google Scholar 

  4. Rak, R.J., Kołodziej, M., Majkowski, A.: Brain-computer interface as measurement and control system the review paper. Metrol. Meas. Syst. 19(3), 427–444 (2012)

    Google Scholar 

  5. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)

    Article  Google Scholar 

  6. Wolpaw, J., Wolpaw, E.W.: Brain-Computer Interfaces Principles and Practice. Oxford University Press, New York (2012)

    Book  Google Scholar 

  7. Byczuk, M., Poryzała, P., Materka, A.: On diversity within operators’ EEG responses to LED-produced alternate stimulus in SSVEP BCI. Bull. Pol. Acad. Sci. Techn. Sci. 60(3) (2012)

    Google Scholar 

  8. Liu, Q., Chen, K., Ai, Q., Xie, S.Q.: Review: recent development of signal processing algorithms for SSVEP-based brain computer interfaces. J. Med. Biolog. Eng. 34(4), 299 (2013)

    Article  Google Scholar 

  9. Materka, A., Poryzala, P.: High-speed noninvasive brain-computer interfaces. In: 2013 6th International Conference on Human System Interactions (HSI), Sopot, pp. 7–12 (2013)

    Google Scholar 

  10. Materka, A., Poryzała, P.: A robust asynchronous SSVEP brain-computer interface based on cluster analysis of canonical correlation coefficients. In: Human-Computer Systems Interaction: Backgrounds and Applications 3, pp. 3–14. Springer International Publishing (2014)

    Google Scholar 

  11. Mouli, S., Palaniappan, R., Sillitoe, I.P., Gan, J.Q.: Performance analysis of multi-frequency SSVEP-BCI using clear and frosted color LED stimuli. In: 2013 IEEE 13th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 1–4 (2013)

    Google Scholar 

  12. Zhu, D., Bieger, J., Garcia Molina, G., Aarts, R.M.: A survey of stimulation methods used in SSVEP-based BCIs. In: Computational Intelligence and Neuroscience (2010)

    Google Scholar 

  13. McFarland, D.J., McCane, L.M., David, S.V., Wolpaw, J.R.: Spatial filter selection for EEG-based communication. Electroencephalogr. Clin. Neurophysiol. 103(3), 386–394 (1997)

    Article  Google Scholar 

  14. Jung, T.-P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., Sejnowski, T.J.: Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin. Neurophysiol. 111(10), 1745–1758 (2000)

    Article  Google Scholar 

  15. Joyce, C.A., Gorodnitsky, I.F., Kutas, M.: Automatic removal of eye movement and blink artifacts from EEG data using blind component separation. Psychophysiology 41(2), 313–325 (2004)

    Article  Google Scholar 

  16. Vigário, R., Sarela, J., Jousmiki, V., Hamalainen, M., Oja, E.: Independent component approach to the analysis of EEG and MEG recordings. IEEE Trans. Biomed. Eng. 47(5), 589–593 (2000)

    Article  Google Scholar 

  17. Rejer, I., Górski, P.: Independent component analysis for EEG data preprocessing - algorithms comparison. In: Computer Information Systems and Industrial Management, pp. 108–119. Springer, Heidelberg (2013)

    Google Scholar 

  18. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York (2004)

    Google Scholar 

  19. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. Wiley, New York (2002)

    Book  Google Scholar 

  20. Cardoso, J.-F.: Source separation using higher order moments. In: Proceedings of ICASSP, pp. 2109–2112 (1989)

    Google Scholar 

  21. Kovacevic, N., McIntosh, A.R.: Groupwise independent component decomposition of EEG data and partial least square analysis. Neuroimage 35(3), 1103–1112 (2007)

    Article  Google Scholar 

  22. Grech, R., Cassar, T., Muscat, J., Camilleri, K.P., Fabri, S.G., Zervakis, M., Xanthopoulos, P., Sakkalis, V., Vanrumste, B.: Review on solving the inverse problem in EEG source analysis. J. Neuroeng. Rehabil. 5, 25 (2008)

    Article  Google Scholar 

  23. Pascual-Marqui, R.D.: Review of methods for solving the EEG inverse problem. Int. J. Bioelectromagnetism 1(1), 75–86 (1999)

    Google Scholar 

  24. Pascual-Marqui, R.D., Esslen, M., Kochi, K., Lehmann, D.: Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review. Meth. Find Exp. Clin. Pharmacol. 24, 91–95 (2002)

    Google Scholar 

  25. Pascual-Marqui, R.D.: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Meth. Find Exp. Clin. Pharmacol. 24, 5–12 (2002)

    Google Scholar 

  26. Painold, A., Anderer, P., Holl, A.K., Letmaier, M., Saletu-Zyhlarz, G.M., Saletu, B., Bonelli, R.M.: EEG low-resolution brain electromagnetic tomography (LORETA) in Huntington’s disease. J. Neurol. 258(5), 840–854 (2011)

    Article  Google Scholar 

  27. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Meth. 134(1), 9–21 (2004)

    Article  Google Scholar 

  28. Cichocki, A., Amari, S., Siwek, K., Tanaka, T., Phan, A.H.: http://www.bsp.brain.riken.jp/ICALAB/. Accessed 03 Oct 2016

  29. Pascual-Marqui, R.D.: http://www.uzh.ch/keyinst/loreta.htm#_Toc391372613. Accessed 03 Oct 2016

  30. Talairach, J., Tournoux, P.: Co-planar Stereotaxic Atlas of the Human Brain. Thieme, Stuttgart (1988)

    Google Scholar 

  31. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algo-rithms for EEG-based brain-computer interfaces. J. Neural Eng. 4(2), 1–13 (2007)

    Article  Google Scholar 

  32. Anupama, H.S., Cauvery, N.K., Lingaraju, G.M.: Real-time EEG based object recognition system using brain computer interface. In: 2014 International Conference on Contemporary Computing and Informatics (IC3I), pp. 1046–1051 (2014)

    Google Scholar 

  33. Zhang, H., Berg, A.C., Maire, M., Malik, J.: SVM-KNN: discriminative nearest neighbor classification for visual category recognition. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), pp. 2126–2136 (2006)

    Google Scholar 

  34. Anupama, H.S., Lingaraju, G.M.: k-NN based object recognition system using brain computer interface. Int. J. Comput. Appl. 120(2), 35–38 (2015)

    Google Scholar 

  35. Marco-Pallarés, J., Grau, C., Ruffini, G.: Combined ICA-LORETA analysis of mismatch negativity. Neuroimage 25(2), 471–477 (2005)

    Article  Google Scholar 

  36. Delorme, A., Westerfield, M., Makeig, S.: Medial prefrontal theta bursts precede rapid motor responses during visual selective attention. J. Neurosci. 27(44), 11949–11959 (2007)

    Article  Google Scholar 

  37. Diaconescu, A.O., Kovacevic, N., McIntosh, A.R.: Modality-independent processes in cued motor preparation revealed by cortical potentials. Neuroimage 42(3), 1255–1265 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Majkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Kołodziej, M., Majkowski, A., Oskwarek, Ł., Rak, R.J., Tarnowski, P. (2018). Processing and Analysis of EEG Signal for SSVEP Detection. In: Augustyniak, P., Maniewski, R., Tadeusiewicz, R. (eds) Recent Developments and Achievements in Biocybernetics and Biomedical Engineering. PCBBE 2017. Advances in Intelligent Systems and Computing, vol 647. Springer, Cham. https://doi.org/10.1007/978-3-319-66905-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66905-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66904-5

  • Online ISBN: 978-3-319-66905-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics