Skip to main content

Hypersequent Calculi for Lewis’ Conditional Logics with Uniformity and Reflexivity

  • Conference paper
  • First Online:
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10501))

Abstract

We present the first internal calculi for Lewis’ conditional logics characterized by uniformity and reflexivity, including non-standard internal hypersequent calculi for a number of extensions of the logic \(\mathbb {V}\mathbb {T}\mathbb {U}\). These calculi allow for syntactic proofs of cut elimination and known connections to \(\mathsf {S5}\). We then introduce standard internal hypersequent calculi for all these logics, in which sequents are enriched by additional structures to encode plausibility formulas as well as diamond formulas. These calculi provide both a decision procedure for the respective logics and constructive countermodel extraction from a failed proof search attempt.

Supported by the Project TICAMORE ANR-16-CE91-0002-01, by the EU under Marie Skłodowska-Curie Grant Agreement No. [660047], and by the project “ExceptionOWL”, Università di Torino and Compagnia di San Paolo, call 2014 “Excellent (young) PI”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Using this notation we thus have: \(x \Vdash A\preccurlyeq B \) iff for all . \( \alpha \Vdash ^{\forall } \lnot B \) or \( \alpha \Vdash ^{\exists } A \).

  2. 2.

    Observe that \( \mathbb {V}\mathbb {T}\mathbb {A}\)+weak centering collapses to S5, since in any model over a set of worlds W it must be for all \(w\in W\), . Furthermore, \( \mathbb {V}\mathbb {T}\mathbb {A}\) + centering collapses to Classical Logic, as in any model the set of worlds must be a singleton \(\{w\}\) and , so that \(A\preccurlyeq B\) is equivalent to the material implication \(B \rightarrow A\). See also Proposition 16 below..

References

  1. Alenda, R., Olivetti, N.: Preferential semantics for the logic of comparative similarity over triangular and metric models. In: Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp. 1–13. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33353-8_1

    Chapter  Google Scholar 

  2. Avron, A.: The method of hypersequents in the proof theory of propositional non-classical logics. In: Hodges, W., Hyland, M., Steinhorn, C., Truss, J. (eds.) Logic: From Foundations to Applications. Clarendon Press, New York (1996)

    Google Scholar 

  3. Burgess, J.P.: Quick completeness proofs for some logics of conditionals. Notre Dame J. Formal Log. 22, 76–84 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chellas, B.F.: Basic conditional logics. J. Philos. Log. 4, 133–153 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  5. Friedman, N., Halpern, J.Y.: On the complexity of conditional logics. In: Doyle, J., Sandewall, E., Torasso, P. (eds.) KR 1994, pp. 202–213. Morgan Kaufmann (1994)

    Google Scholar 

  6. Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Tableau calculus for preference-based conditional logics: PCL and its extensions. ACM TOCL 10(3), 21:1–21:50 (2009)

    MATH  MathSciNet  Google Scholar 

  7. Girlando, M., Lellmann, B., Olivetti, N., Pozzato, G.L.: Standard sequent calculi for Lewis’ logics of counterfactuals. In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS, vol. 10021, pp. 272–287. Springer, Cham (2016). doi:10.1007/978-3-319-48758-8_18

    Chapter  Google Scholar 

  8. Grahne, G.: Updates and counterfactuals. J. Log. Comput. 8(1), 87–117 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kuznets, R., Lellmann, B.: Grafting hypersequents onto nested sequents. Log. J. IGPL 24, 375–423 (2016)

    Article  MathSciNet  Google Scholar 

  11. Lellmann, B.: Hypersequent rules with restricted contexts for propositional modal logics. Theoret. Comput. Sci. 656, 76–105 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lellmann, B., Pattinson, D.: Sequent systems for Lewis’ conditional logics. In: Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519, pp. 320–332. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33353-8_25

    Chapter  Google Scholar 

  13. Lewis, D.: Counterfactuals. Blackwell, London (1973)

    MATH  Google Scholar 

  14. Nute, D.: Topics in Conditional Logic. Reidel, Dordrecht (1980)

    Book  MATH  Google Scholar 

  15. Olivetti, N., Pozzato, G.L.: A standard internal calculus for Lewis’ counterfactual logics. In: Nivelle, H. (ed.) TABLEAUX 2015. LNCS, vol. 9323, pp. 270–286. Springer, Cham (2015). doi:10.1007/978-3-319-24312-2_19

    Chapter  Google Scholar 

  16. Restall, G.: Proofnets for S5: sequents and circuits for modal logic. In: Logic Colloquium 2005. Lecture Notes in Logic, vol. 28, pp. 151–172. Cambridge University Press (2007)

    Google Scholar 

  17. Sheremet, M., Tishkovsky, D., Wolter, F., Zakharyaschev, M.: A logic for concepts and similarity. J. Log. Comput. 17(3), 415–452 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Stalnaker, R.: A theory of conditionals. In: Rescher, N. (ed.) Studies in Logical Theory, pp. 98–112. Blackwell (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Lellmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Girlando, M., Lellmann, B., Olivetti, N., Pozzato, G.L. (2017). Hypersequent Calculi for Lewis’ Conditional Logics with Uniformity and Reflexivity. In: Schmidt, R., Nalon, C. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2017. Lecture Notes in Computer Science(), vol 10501. Springer, Cham. https://doi.org/10.1007/978-3-319-66902-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66902-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66901-4

  • Online ISBN: 978-3-319-66902-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics