Skip to main content

Validation of Particle-Laden Large-Eddy Simulation Using HPC Systems

  • Conference paper
  • First Online:
Sustained Simulation Performance 2017

Abstract

In this contribution, results of a direct particle-fluid simulation (DPFS) are compared with direct numerical simulations and large-eddy simulations (LES) using a popular Euler-Lagrange method (ELM). DPFS facilitates the computation of particulate turbulent flow with particle sizes on the order of the smallest flow scales, which requires advanced numerical methods and parallelization strategies accompanied by considerable computing resources. After recapitulating methods required for DPFS, a setup is proposed where DPFS is used as a benchmark for direct numerical simulations and LES. Therefore, a modified implicit LES scheme is proposed, which shows convincing statistics in comparison to a direct numerical simulation of a single phase flow. Preliminary results of particle-laden flow show good agreement of the LES and the DPFS findings. Further benchmark cases for an appreciable range of parameters are required to draw a rigorous conclusion of the accuracy of the ELM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balachandar, S., Eaton, J.K.: Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111–133 (2010)

    Article  MATH  Google Scholar 

  2. Berger, M., Aftosmis, M.: Progress towards a Cartesian cut-cell method for viscous compressible flow. AIAA Paper 2012-1301 (2012)

    Google Scholar 

  3. Boivin, M., Simonin, O., Squires, K.D.: Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. J. Fluid Mech. 375, 235–263 (1998)

    Article  MATH  Google Scholar 

  4. Elghobashi, S.: On predicting particle-laden turbulent flows. Appl. Sci. Res. 52, 309–329 (1994)

    Article  Google Scholar 

  5. Elghobashi, S., Truesdell, G.: On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: turbulence modification. Phys. Fluids A 5, 1790–1801 (1993)

    MATH  Google Scholar 

  6. Hartmann, D., Meinke, M., Schröder, W.: An adaptive multilevel multigrid formulation for Cartesian hierarchical grid methods. Comp. Fluids 37, 1103–1125 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lintermann, A., Schlimpert, S., Grimmen, J., Günther, C., Meinke, M., Schröder, W.: Massively parallel grid generation on HPC systems. Comput. Methods Appl. Mech. Eng. 277, 131–153 (2014)

    Article  MathSciNet  Google Scholar 

  8. Liou, M.-S., Steffen, C.J.: A new flux splitting scheme. J. Comput. Phys. 107, 23–39 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Maxey, M.R., Riley, J.J.: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883–889 (1983)

    Article  MATH  Google Scholar 

  10. Maxey, M., Patel, B., Chang, E., Wang, L.-P.: Simulations of dispersed turbulent multiphase flow. Fluid Dyn. Res. 20, 143–156 (1997)

    Article  Google Scholar 

  11. Meinke, M., Schröder, W., Krause, E., Rister, T.: A comparison of second-and sixth-order methods for large-eddy simulations. Comput. Fluids 31, 695–718 (2002)

    Article  MATH  Google Scholar 

  12. Orszag, S.A.: Numerical methods for the simulation of turbulence. Phys. Fluids 12, II-250 (1969)

    Google Scholar 

  13. Schneiders, L., Hartmann, D., Meinke, M., Schröder, W.: An accurate moving boundary formulation in cut-cell methods. J. Comput. Phys. 235, 786–809 (2013)

    Article  MathSciNet  Google Scholar 

  14. Schneiders, L., Meinke, M., Schröder, W.: A robust cut-cell method for fluidstructure interaction on adaptive meshes. AIAA Paper 2013-2716 (2013)

    Google Scholar 

  15. Schneiders, L., Grimmen, J.H., Meinke, M., Schröder, W.: An efficient numerical method for fully-resolved particle simulations on high-performance computers. PAMM 15, 495–496 (2015)

    Article  Google Scholar 

  16. Schneiders, L., Günther, C., Grimmen, J.H., Meinke, M.H., Schröder, W.: Sharp resolution of complex moving geometries using a multi-cut-cell viscous flow solver. AIAA 2015-3427 (2015)

    Google Scholar 

  17. Schneiders, L., Günther, C., Meinke, M., Schröder, W.: An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows. J. Comput. Phys. 311, 62–86 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  18. Schneiders, L., Meinke, M., Schröder, W.: Direct particle-fluid simulation of Kolmogorov-length-scale size particles in decaying isotropic turbulence. J. Fluid Mech. 819, 188–227 (2017)

    Article  MathSciNet  Google Scholar 

  19. Schneiders, L., Meinke, M., Schröder, W.: On the accuracy of Lagrangian point-mass models for heavy non-spherical particles in isotropic turbulence. Fuel 201, 2–14 (2017)

    Article  Google Scholar 

  20. Schumann, U., Patterson, G.: Numerical study of pressure and velocity fluctuations in nearly isotropic turbulence. J. Fluid Mech. 88, 685–709 (1978)

    Article  MATH  Google Scholar 

  21. Siewert, C., Kunnen, R., Schröder, W.: Collision rates of small ellipsoids settling in turbulence. J. Fluid Mech. 758, 686–701 (2014)

    Article  Google Scholar 

  22. Thornber, B., Mosedale, A., Drikakis, D., Youngs, D., Williams, R.J.: An improved reconstruction method for compressible flows with low Mach number features. J. Comput. Phys. 227, 4873–4894 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    MATH  Google Scholar 

Download references

Acknowledgements

This work has been funded by the German Research Foundation (DFG) within the framework of the SFB/Transregio 129 “Oxyflame” (subproject B2). The support is gratefully acknowledged. Computing resources were provided by the High Performance Computing Center Stuttgart and by the Jülich Supercomputing Center (JSC) within a Large-Scale Project of the Gauss Center for Supercomputing (GCS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Fröhlich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Fröhlich, K., Schneiders, L., Meinke, M., Schröder, W. (2017). Validation of Particle-Laden Large-Eddy Simulation Using HPC Systems. In: Resch, M., Bez, W., Focht, E., Gienger, M., Kobayashi, H. (eds) Sustained Simulation Performance 2017 . Springer, Cham. https://doi.org/10.1007/978-3-319-66896-3_9

Download citation

Publish with us

Policies and ethics