Skip to main content

Wavelet-Based Compression of Volumetric CFD Data Sets

  • Conference paper
  • First Online:
Sustained Simulation Performance 2017

Abstract

One of the major pitfalls of storing “raw” simulation results lies in the implicit and redundant manner in which it represents the flow physics. Thus transforming the large “raw” into compact feature- or structure-based data could help overcome the I/O bottleneck. Several compression techniques have already been proposed to tackle this problem. Yet, most of these so-called lossless compressors either solely consist of dictionary encoders, which merely act upon the statistical redundancies in the underlying binary data structure, or use a preceding predictor stage to decorrelate intrinsic spatial redundancies. Efforts have already been made to adapt image compression standards like the JPEG codec to floating-point arrays. However, most of these algorithms rely on the discrete cosine transform which offers inferior compression performance when compared to the discrete wavelet transform. We therefore demonstrate the viability of a wavelet-based compression scheme for large-scale numerical datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acharya, T., Tsai, P.: JPEG2000 Standard for Image Compression: Concepts, Algorithms and VLSI Architectures. Wiley, New Jersey (2005)

    Book  Google Scholar 

  2. Bruylants, T., Munteanu, A., Schelkens, P.: Wavelet based volumetric medical image compression. Signal Process. Image Commun. 31, 112–133 (2015). doi:10.1016/j.image.2014.12.007

    Article  Google Scholar 

  3. Christopoulos, C., Skodras, A., Ebrahimi, T.: The JPEG2000 still image coding system: an overview. IEEE Trans. Consum. Electron. 46(4), 1103–1127 (2000). doi:10.1109/30.920468

    Article  Google Scholar 

  4. Jacobs, T., Jammy, S.P., Sandham, N.D.: OpenSBLI: a framework for the automated derivation and parallel execution of finite difference solvers on a range of computer architectures. J. Comput. Sci. 18, 12–23 (2017). doi:10.1016/j.jocs.2016.11.001

    Article  Google Scholar 

  5. Li, S., Li, W.: Shape-adaptive discrete wavelet transforms for arbitrarily shaped visual object coding. IEEE Trans. Circuits Syst. Video Technol. 10(5), 725–743 (2000). doi:10.1109/76.856450

    Article  Google Scholar 

  6. Lindstrom, P.: Fixed-rate compressed floating-point arrays. IEEE Trans. Vis. Comput. Graph. 20(12), 2674–2683 (2014). doi:10.1109/TVCG.2014.2346458

    Article  Google Scholar 

  7. Lindstrom, P., Isenburg M.: Fast and efficient compression of floating-point data. IEEE Trans. Vis. Comput. Graph. 12(5), 1245–1250 (2006). doi:10.1109/TVCG.2006.143

    Article  Google Scholar 

  8. Loddoch, A., Schmalzl, J.: Variable quality compression of fluid dynamical data sets using a 3-D DCT technique. Geochem. Geophys. Geosyst. 7(1), 1–13 (2006). doi:10.1029/2005GC001017

    Article  Google Scholar 

  9. Rabbani, M., Joshi, R.: An overview of the JPEG 2000 still image compression standard. Signal Process. Image Commun. 17(1), 3–48 (2002). doi:10.1016/S0923-5965(01)00024-8

    Article  Google Scholar 

  10. Schmalzl, J.: Using standard image compression algorithms to store data from computational fluid dynamics. Comput. Geosci. 29, 1021–1031 (2003). doi:10.1016/S0098-3004(03)00098-0

    Article  Google Scholar 

  11. Sze, V., Budagavi, M., Sullivan, G.J. (eds.): High Efficiency Video Coding (HEVC): Algorithms and Architectures. Springer, Cham (2014)

    Google Scholar 

  12. Taubman, D., Marcellin, M.: JPEG2000: Image Compression Fundamentals, Standards and Practice. Springer, New York (2002)

    Book  Google Scholar 

  13. Welch, T.A.: A technique for high-performance data compression. Computer 17(6), 8–19 (1984). doi:10.1109/MC.1984.1659158

    Article  Google Scholar 

  14. Wenzel, C., Selent, B., Kloker, M., Rist, U.: DNS of compressible turbulent boundary layers and assessment of data-scaling-law quality. Under consideration for publication in J. Fluid Mech.

    Google Scholar 

  15. Wien, M.: High Efficiency Video Coding (HEVC): Coding Tools and Specification. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by a European Commission Horizon 2020 project grant entitled “ExaFLOW: Enabling Exascale Fluid Dynamics Simulations” (grant reference 671571). The authors would also like to thank Christoph Wenzel at the Institute of Aerodynamics and Gasdynamics at the University of Stuttgart for providing labor intensive data sets of a turbulent flat-plate boundary flow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Vogler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Vogler, P., Rist, U. (2017). Wavelet-Based Compression of Volumetric CFD Data Sets. In: Resch, M., Bez, W., Focht, E., Gienger, M., Kobayashi, H. (eds) Sustained Simulation Performance 2017 . Springer, Cham. https://doi.org/10.1007/978-3-319-66896-3_8

Download citation

Publish with us

Policies and ethics