Skip to main content

Transport Phenomena in Rotating Turbulence

  • Chapter
  • First Online:
Book cover Mixing and Dispersion in Flows Dominated by Rotation and Buoyancy

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 580))

  • 810 Accesses

Abstract

The role of rotation on turbulence and some of its transport properties will be reviewed with emphasis on two specific cases: statistically steady or decaying rotating turbulence and rotating thermally driven turbulence. For this purpose we briefly address a few basic concepts relevant for understanding processes in rotating (turbulent) flows such as the emergence of coherent structures, the Taylor-Proudman theorem, quasi-two-dimensional turbulence, inertial waves and Ekman boundary layers. The effect of rotation on turbulence will subsequently be illustrated with two sets of laboratory experiments: one with steadily forced rotating turbulence and another with rotating turbulent convection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • G. Ahlers, S. Grossmann, D. Lohse, Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Rev. Modern Phys. 81, 503–537 (2009)

    Article  Google Scholar 

  • J. Bardina, J.H. Ferziger, R.S. Rogallo, Effect of rotation on isotropic turbulence: computation and modelling. J. Fluid Mech. 154, 321–336 (1985)

    Article  Google Scholar 

  • C.N. Baroud, B.B. Plapp, Z.-S. She, H.L. Swinney, Anomalous self-similarity in a turbulent rapidly rotating fluid. Phys. Rev. Lett. 88(11), 114501 (2002)

    Article  Google Scholar 

  • C.N. Baroud, B.B. Plapp, H.L. Swinney, Z.-S. She, Scaling in three-dimensional and quasi-two-dimensional rotating turbulent flows. Phys. Fluids 15(8), 2091–2104 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • P. Bartello, O. Métais, M. Lesieur, Coherent structures in rotating three-dimensional turbulence. J. Fluid Mech. 273, 1–29 (1994)

    Article  MathSciNet  Google Scholar 

  • G. Boffetta, R.E. Ecke, Two-dimensional turbulence. Ann. Rev. Fluid Mech. 44, 427–451 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • G. Boffetta, S. Musacchio, Evidence for the double cascade scenario in two-dimensional turbulence. Phys. Rev. E 82(1), 016307 (2010)

    Article  Google Scholar 

  • C. Cambon, N.N. Mansour, F.S. Godeferd, Energy transfer in rotating turbulence. J. Fluid Mech. 337, 303–332 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • A. Campagne, B. Gallet, F. Moisy, P.-P. Cortet, Direct and inverse energy cascades in a forced rotating turbulence experiment. Phys. Fluids 26(12), 125112 (2014)

    Article  Google Scholar 

  • S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, Oxford, 1961)

    MATH  Google Scholar 

  • H.J.H. Clercx, G.J.F. van Heijst, Two-dimensional Navier-Stokes turbulence in bounded domains. Appl. Mech. Rev. 62, 020802 (2009)

    Article  Google Scholar 

  • S.B. Dalziel, Decay of rotating turbulence: Some particle tracking experiments. Appl. Sci. Res. 49(3), 217–244 (1992)

    Article  Google Scholar 

  • S.B. Dalziel, The twists and turns of rotating turbulence. J. Fluid Mech. 666, 1–4 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • P.A. Davidson, Turbulence in Rotating. Stratified and Electrically Conducting Fluids (Cambridge University Press, 2013)

    Google Scholar 

  • P.A. Davidson, P.J. Staplehurst, S.B. Dalziel, On the evolution of eddies in a rapidly rotating system. J. Fluid Mech. 557, 135–144 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • L. Del Castello, Table-Top Rotating Turbulence: An Experimental Insight Through Particle Tracking. PhD Thesis, Eindhoven University of Technology, 2010

    Google Scholar 

  • L. Del Castello, H.J.H. Clercx, Lagrangian velocity autocorrelations in statistically steady rotating turbulence. Phys. Rev. E 83(5), 056316 (2011a)

    Google Scholar 

  • L. Del Castello, H.J.H. Clercx, Lagrangian acceleration of passive tracers in statistically steady rotating turbulence. Phys. Rev. Lett. 107(21), 214502 (2011b)

    Google Scholar 

  • L. Del Castello, H.J.H. Clercx, Geometrical statistics of the vorticity vector and the strain rate tensor in rotating turbulence. J. Turbul. 14(10), 19–36 (2013)

    Article  Google Scholar 

  • A. Delache, C. Cambon, F. Godeferd, Scale by scale anisotropy in freely decaying rotating turbulence. Phys. Fluids 26(2), 025104 (2014)

    Article  Google Scholar 

  • S.C. Dickinson, R.R. Long, Oscillating-grid turbulence including effects of rotation. J. Fluid Mech. 126, 315–333 (1983)

    Article  Google Scholar 

  • M.G. Dunn, Convective heat transfer and aerodynamics in axial flow turbines. J. Turbomach. 123(4), 637–686 (2001)

    Article  Google Scholar 

  • V.W. Ekman, On the influence of the Earth’s rotation on ocean currents. Arkiv för Matematik, Astronomi och Fysik 2(11), 1–52 (1905)

    MATH  Google Scholar 

  • U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov (Cambridge University Press, 1995)

    Google Scholar 

  • J. Gascard, A.J. Watson, M.J. Messias, K.A. Olsen, T. Johannesen, K. Simonsen, Long-lived vortices as a mode of deep ventilation in the Greenland Sea. Nature 416, 525–527 (2002)

    Article  Google Scholar 

  • F.S. Godeferd, L. Lollini, Direct Numerical simulations of turbulence with confinement and rotation. J. Fluid Mech. 393, 257–308 (1999)

    Article  MATH  Google Scholar 

  • F.S. Godeferd, F. Moisy, Structure and dynamics of rotating turbulence: a review of recent experimental and numerical results. Appl. Mech. Rev. 67, 030802 (2015)

    Article  Google Scholar 

  • H.P. Greenspan, The Theory of Rotating Fluids (Cambridge University Press, 1968)

    Google Scholar 

  • S. Grossmann, D. Lohse, Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 27–56 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • D.L. Hartmann, L.A. Moy, Q. Fu, Tropical convection and the energy balance at the top of the atmosphere. J. Climate 14(24), 4495–4511 (2001)

    Article  Google Scholar 

  • E. Hopfinger, P. Browand, Y. Gagne, Turbulence and waves in a rotating tank. J. Fluid Mech. 125, 505–534 (1982)

    Article  Google Scholar 

  • A. Ibbetson, D.J. Tritton, Experiments on turbulence in a rotating fluid. J. Fluid Mech. 68, 639–672 (1975)

    Article  Google Scholar 

  • T. Ishihara, Y. Kaneda, M. Yokokawa, K. Itakura, A. Uno, Small-scale statistics in high-resolution direct numerical simulations of turbulence: Reynolds number dependence of one-point velocity gradient statistics. J. Fluid Mech. 592, 335–366 (2007)

    Article  MATH  Google Scholar 

  • L. Jacquin, O. Leuchter, C. Cambon, J. Mathieu, Homogeneous turbulence in the presence of rotation. J. Fluid Mech. 220, 1–52 (1990)

    Article  MATH  Google Scholar 

  • J.P. Johnston, Effects of system rotation on turbulence structure: a review to turbomachinery flows. Int. J. Rotat. Mach. 4(2), 97–112 (1998)

    Article  Google Scholar 

  • M. Kaczorowski, K.-L. Chong, K.-Q. Xia, Turbulent flow in the bulk of Rayleigh-Bénard convection: aspect-ratio dependence of the small-scale properties. J. Fluid Mech. 747, 73–102 (2014)

    Article  Google Scholar 

  • L.P. Kadanoff, Turbulent heat flow: structures and scaling. Phys. Today 54(8), 34–39 (2001)

    Article  Google Scholar 

  • Y. Kaneda, T. Ishihara, High-resolution direct numerical simulation of turbulence. J. Turbul. 7, N20 (2006)

    Article  Google Scholar 

  • R.H. Kraichnan, Inertial ranges in two-dimensional turbulence. Phys. Fluids 10(7), 1417–1423 (1967)

    Article  MathSciNet  Google Scholar 

  • R. Krishnamurti, L.N. Howard, Large-scale flow generation in turbulent convection. Proc. Natl. Acad. Sci. USA 78, 1981–1985 (1981)

    Article  Google Scholar 

  • P.K. Kundu, I.M. Cohen, D.R. Dowling, Fluid Mechanics (Academic Press, 2016)

    Google Scholar 

  • R.P.J. Kunnen, H.J.H. Clercx, B.J. Geurts, Breakdown of large-scale circulation in turbulent rotating convection. Europhys. Lett. 84(2), 24001 (2008a)

    Google Scholar 

  • R.P.J. Kunnen, H.J.H. Clercx, B.J. Geurts, Enhanced vertical inhomogeneity in turbulent rotating convection. Phys. Rev. Lett. 101(17), 174501 (2008b)

    Google Scholar 

  • R.P.J. Kunnen, B.J. Geurts, H.J.H. Clercx, Experimental and numerical investigation of turbulent convection in a rotating cylinder. J. Fluid Mech. 642, 445–476 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • D. Lohse, K.-Q. Xia, Small-scale properties of turbulent Rayleigh-Bénard convection. Ann. Rev. Fluid Mech. 42, 335–364 (2010)

    Article  MATH  Google Scholar 

  • J.L. Lumley, G.R. Newman, The return to isotropy of homogeneous turbulence. J. Fluid Mech. 82, 161–178 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  • M.S. Miesch, The coupling of solar convection and rotation. Solar Phys. 192(1), 59–89 (2000)

    Article  Google Scholar 

  • P. Mininni, D. Rosenberg, A. Pouquet, Isotropisation at small scales of rotating helically driven turbulence. J. Fluid Mech. 699, 263–279 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • F. Moisy, C. Morize, M. Rabaud, J. Sommeria, Decay laws, anisotropy and cyclone-anticyclone asymmetry in decaying rotating turbulence. J. Fluid Mech. 666, 5–35 (2011)

    Article  MATH  Google Scholar 

  • Y. Morinishi, K. Nakabayashi, S. Ren, A new DNS algorithm for rotating homogeneous decaying turbulence. Int. J. Heat Fluid Flow 22(1), 30–38 (2001)

    Article  Google Scholar 

  • C. Morize, F. Moisy, M. Rabaud, Decaying grid-generated turbulence in a rotating tank. Phys. Fluids 17(9), 095105 (2005)

    Article  MATH  Google Scholar 

  • W.-C. Müller, M. Thiele, Scaling and energy transfer in rotating turbulence. Europhys. Lett. 77(3), 34003 (2007)

    Article  Google Scholar 

  • R. Ni, S.D. Huang, K.-Q. Xia, Lagrangian acceleration measurements in convective thermal turbulence. J. Fluid Mech. 692, 395–419 (2012)

    Article  MATH  Google Scholar 

  • J. Pedlosky, Geophysical Fluid Dynamics (Springer, 1987)

    Google Scholar 

  • S.B. Pope, Turbulent Flows (Cambridge University Press, 2000)

    Google Scholar 

  • J. Proudman, On the motion of solids in a liquid possessing vorticity. Proc. R. Soc. A: Math. Phys. Eng. Sci. 92(642), 408–424 (1916)

    Article  MATH  Google Scholar 

  • H. Rajaei, P. Joshi, K.M.J. Alards, R.P.J. Kunnen, F. Toschi, H.J.H. Clercx, Transitions in turbulent rotating convection: a Lagrangian perspective. Phys. Rev. E 93(4), 043129 (2016)

    Article  Google Scholar 

  • H.T. Rossby, A study of Bénard convection with and without rotation. J. Fluid Mech. 36(2), 309–335 (1969)

    Article  Google Scholar 

  • J. Seiwert, C. Morize, F. Moisy, On the decrease of intermittency in decaying rotating turbulence. Phys. Fluids 20(7), 071702 (2008)

    Article  MATH  Google Scholar 

  • L.M. Smith, F. Waleffe, Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys. Fluids 11(6), 1608–1622 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • P.J. Staplehurst, P.A. Davidson, S.B. Dalziel, Structure formation in homogeneous freely decaying rotating turbulence. J. Fluid Mech. 598, 81–106 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • R.J.A.M. Stevens, J.-Q. Zhong, H.J.H. Clercx, G. Ahlers, D. Lohse, Transitions between turbulent states in rotating Rayleigh-Bénard convection. Phys. Rev. Lett. 103(2), 024503 (2009)

    Article  Google Scholar 

  • R.J.A.M. Stevens, H.J.H. Clercx, D. Lohse, Heat transport and flow structure in rotating Rayleigh-Bénard convection. Eur. J. Fluid Mech. B/Fluids 40, 41–49 (2013)

    Article  Google Scholar 

  • G.I. Taylor, Motions of solids in fluids when the flow is not irrotational. Proce. R. Soc. A: Math. Phys. Eng. Sci. 93(648), 99–113 (1917)

    Article  MATH  Google Scholar 

  • T. Teitelbaum, P.D. Mininni, Large-scale effects on the decay of rotating helical and non-helical turbulence. Physica Scripta 2010, 014003 (2010)

    Article  Google Scholar 

  • T. Teitelbaum, P.D. Mininni, The decay of turbulence in rotating flows. Phys. Fluids 23(6), 065105 (2011)

    Article  Google Scholar 

  • M. Thiele, W.-C. Müller, Structure and decay of rotating homogeneous turbulence. J. Fluid Mech. 637, 425–442 (2009)

    Article  MATH  Google Scholar 

  • L.J.A. van Bokhoven, H.J.H. Clercx, G.J.F. van Heijst, R.R. Trieling, Experiments on rapidly rotating turbulent flows. Phys. Fluids 21(9), 096601 (2009)

    Article  MATH  Google Scholar 

  • H. van Santen, C.R. Kleijn, H.E.A. van den Akker, On turbulent flows in cold-wall CVD reactors. J. Crystal Growth 212(1–2), 299–310 (2000)

    Article  Google Scholar 

  • P. Wadhams, J. Holfort, E. Hansen, J.P. Wilkinson, A deep convective chimney in the winter Greenland Sea. Geophys. Res. Lett. 29(10), 1434–1437 (2002)

    Article  Google Scholar 

  • P.K. Yeung, Y. Zhou, Numerical study of rotating turbulence with external forcing. Phys. Fluids 10(11), 2895–2909 (1998)

    Article  Google Scholar 

  • M. Yokokawa, K. Itakura, A. Uno, T. Ishihara, Y. Kaneda, 16.4-Tflops direct numerical simulation of turbulence by a Fourier spectral method on the Earth simulator, in Proceedings IEEE/ACM SC2002 Conference, Baltimore, 2002, http://www.supercomputing.org/sc2002/paperpdfs/pap.pap273.pdf

  • K. Yoshimatsu, M. Midorikawa, Y. Kaneda, Columnar eddy formation in freely decaying homogeneous rotating turbulence. J. Fluid Mech. 677, 154–178 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • J.-Q. Zhong, R.J.A.M. Stevens, H.J.H. Clercx, R. Verzicco, D. Lohse, G. Ahlers, Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh-Bénard convection. Phys. Rev. Lett. 102(4), 044502 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herman J. H. Clercx .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Clercx, H.J.H. (2018). Transport Phenomena in Rotating Turbulence. In: Clercx, H., Van Heijst, G. (eds) Mixing and Dispersion in Flows Dominated by Rotation and Buoyancy. CISM International Centre for Mechanical Sciences, vol 580. Springer, Cham. https://doi.org/10.1007/978-3-319-66887-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66887-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66886-4

  • Online ISBN: 978-3-319-66887-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics