Skip to main content

Role of Intravenous Immunoglobulin in Dermatologic Disorders

  • Chapter
  • First Online:
Biologic and Systemic Agents in Dermatology

Abstract

Intravenous immunoglobulin (IVIg) represents polyclonal natural antibodies pooled from sera of healthy donors. It has been successfully used to treat a variety of autoimmune and inflammatory disorders. Historically, IVIg was used to treat immune deficiencies and was first described in 1952 by Bruton who infused a child with congenital agammaglobulinemia suffering from recurrent infections. Following expansion of its use in primary antibody deficiencies, the use of IVIg in autoimmune disease was described in 1981, and has since been approved by the United States Food and Drug Administration (FDA) for several autoimmune disorders. IVIG is used off-label in a variety of immune-mediated dermatologic diseases. We herein discuss the complicated immunologic mechanisms of IVIG, as well as discuss its use in the treatment of various dermatologic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bruton OC. Agammaglobulinemia. Pediatrics. 1952;9:722–8.

    CAS  PubMed  Google Scholar 

  2. Imbach P, Barandun S, Baumgartner C, Hirt A, Hofer F, Wagner HP. High-dose intravenous gammaglobulin therapy of refractory, in particular idiopathic thrombocytopenia in childhood. Helv Paediatr Acta. 1981;36:81–6.

    CAS  PubMed  Google Scholar 

  3. Durandy A, Kaveri SV, Kuijpers TW, Basta M, Miescher S, Ravetch JV, et al. Intravenous immunoglobulins--understanding properties and mechanisms. Clin Exp Immunol. 2009;158(Suppl 1):2–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Radosevich M, Burnouf T. Intravenous immunoglobulin G: trends in production methods, quality control and quality assurance. Vox Sang. 2010;98:12–28.

    Article  CAS  PubMed  Google Scholar 

  5. Barahona Afonso AF, Joao CM. The production processes and biological effects of intravenous immunoglobulin. Biomolecules. 2016;6

    Google Scholar 

  6. Prins C, Gelfand EW, French LE. Intravenous immunoglobulin: properties, mode of action and practical use in dermatology. Acta Derm Venereol. 2007;87:206–18.

    CAS  PubMed  Google Scholar 

  7. Ballow M. Intravenous immunoglobulins: clinical experience and viral safety. J Am Pharm Assoc (Wash). 2002;42:449–58. quiz 58-9

    Article  Google Scholar 

  8. Thorpe SJ. Specifications for anti-A and anti-B in intravenous immunoglobulin: history and rationale. Transfusion. 2015;55(Suppl 2):S80–5.

    Article  CAS  PubMed  Google Scholar 

  9. Ghetie V, Hubbard JG, Kim JK, Tsen MF, Lee Y, Ward ES. Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice. Eur J Immunol. 1996;26:690–6.

    Article  CAS  PubMed  Google Scholar 

  10. Morell A, Terry WD, Waldmann TA. Metabolic properties of IgG subclasses in man. J Clin Invest. 1970;49:673–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wasserman RL, Church JA, Peter HH, Sleasman JW, Melamed I, Stein MR, et al. Pharmacokinetics of a new 10% intravenous immunoglobulin in patients receiving replacement therapy for primary immunodeficiency. Eur J Pharm Sci. 2009;37:272–8.

    Article  CAS  PubMed  Google Scholar 

  12. Junghans RP, Anderson CL. The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci U S A. 1996;93:5512–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Leontyev D, Neschadim A, Branch DR. Cytokine profiles in mouse models of experimental immune thrombocytopenia reveal a lack of inflammation and differences in response to intravenous immunoglobulin depending on the mouse strain. Transfusion. 2014;54:2871–9.

    Article  CAS  PubMed  Google Scholar 

  14. Dezsi L, Horvath Z, Vecsei L. Intravenous immunoglobulin: pharmacological properties and use in polyneuropathies. Expert Opin Drug Metab Toxicol. 2016:1–16.

    Google Scholar 

  15. Pierangeli SS, Espinola R, Liu X, Harris EN, Salmon JE. Identification of an Fc gamma receptor-independent mechanism by which intravenous immunoglobulin ameliorates antiphospholipid antibody-induced thrombogenic phenotype. Arthritis Rheum. 2001;44:876–83.

    Article  CAS  PubMed  Google Scholar 

  16. Debre M, Bonnet MC, Fridman WH, Carosella E, Philippe N, Reinert P, et al. Infusion of Fc gamma fragments for treatment of children with acute immune thrombocytopenic purpura. Lancet. 1993;342:945–9.

    Article  CAS  PubMed  Google Scholar 

  17. Kaveri SV. Intravenous immunoglobulin: exploiting the potential of natural antibodies. Autoimmun Rev. 2012;11:792–4.

    Article  CAS  PubMed  Google Scholar 

  18. Coutinho A, Kazatchkine MD, Avrameas S. Natural autoantibodies. Curr Opin Immunol. 1995;7:812–8.

    Article  CAS  PubMed  Google Scholar 

  19. Watanabe M, Uchida K, Nakagaki K, Trapnell BC, Nakata K. High avidity cytokine autoantibodies in health and disease: pathogenesis and mechanisms. Cytokine Growth Factor Rev. 2010;21:263–73.

    Article  CAS  PubMed  Google Scholar 

  20. Casali P, Prabhakar BS, Notkins AL. Characterization of multireactive autoantibodies and identification of Leu-1+ B lymphocytes as cells making antibodies binding multiple self and exogenous molecules. Int Rev Immunol. 1988;3:17–45.

    Article  CAS  PubMed  Google Scholar 

  21. Hurez V, Dietrich G, Kaveri SV, Kazatchkine MD. Polyreactivity is a property of natural and disease-associated human autoantibodies. Scand J Immunol. 1993;38:190–6.

    Article  CAS  PubMed  Google Scholar 

  22. Lacroix-Desmazes S, Kaveri SV, Mouthon L, Ayouba A, Malanchere E, Coutinho A, et al. Self-reactive antibodies (natural autoantibodies) in healthy individuals. J Immunol Methods. 1998;216:117–37.

    Article  CAS  PubMed  Google Scholar 

  23. von Gunten S, Simon HU. Natural anti-Siglec autoantibodies mediate potential immunoregulatory mechanisms: implications for the clinical use of intravenous immunoglobulins (IVIg). Autoimmun Rev. 2008;7(6):453.

    Article  CAS  Google Scholar 

  24. von Gunten S, Vogel M, Schaub A, Stadler BM, Miescher S, Crocker PR, et al. Intravenous immunoglobulin preparations contain anti-Siglec-8 autoantibodies. J Allergy Clin Immunol. 2007;119:1005–11.

    Article  CAS  Google Scholar 

  25. von Gunten S, Schaub A, Vogel M, Stadler BM, Miescher S, Simon HU. Immunologic and functional evidence for anti-Siglec-9 autoantibodies in intravenous immunoglobulin preparations. Blood. 2006;108:4255–9.

    Article  CAS  Google Scholar 

  26. Hamilos DL, Christensen J. Treatment of Churg-Strauss syndrome with high-dose intravenous immunoglobulin. J Allergy Clin Immunol. 1991;88:823–4.

    Article  CAS  PubMed  Google Scholar 

  27. Khan S, Dore PC, Sewell WA. Both patient characteristics and IVIG product-specific mechanisms may affect eosinophils in immunoglobulin-treated Kawasaki disease. Pediatr Allergy Immunol. 2008;19:186–7.

    Article  CAS  PubMed  Google Scholar 

  28. Kuo HC, Yang KD, Liang CD, Bong CN, HR Y, Wang L, et al. The relationship of eosinophilia to intravenous immunoglobulin treatment failure in Kawasaki disease. Pediatr Allergy Immunol. 2007;18:354–9.

    Article  PubMed  Google Scholar 

  29. Pan Y, Yuhasz SC, Amzel LM. Anti-idiotypic antibodies: biological function and structural studies. FASEB J. 1995;9:43–9.

    CAS  PubMed  Google Scholar 

  30. Rossi F, Dietrich G, Kazatchkine MD. Anti-idiotypes against autoantibodies in normal immunoglobulins: evidence for network regulation of human autoimmune responses. Immunol Rev. 1989;110:135–49.

    Article  CAS  PubMed  Google Scholar 

  31. Rossi F, Kazatchkine MD. Antiidiotypes against autoantibodies in pooled normal human polyspecific Ig. J Immunol. 1989;143:4104–9.

    CAS  PubMed  Google Scholar 

  32. Ronda N, Haury M, Nobrega A, Coutinho A, Kazatchkine MD. Selectivity of recognition of variable (V) regions of autoantibodies by intravenous immunoglobulin (IVIg). Clin Immunol Immunopathol. 1994;70:124–8.

    Article  CAS  PubMed  Google Scholar 

  33. Ronda N, Haury M, Nobrega A, Kaveri SV, Coutinho A, Kazatchkine MD. Analysis of natural and disease-associated autoantibody repertoires: anti-endothelial cell IgG autoantibody activity in the serum of healthy individuals and patients with systemic lupus erythematosus. Int Immunol. 1994;6:1651–60.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang W, Reichlin M. Production and characterization of a human monoclonal anti-idiotype to anti-ribosomal P antibodies. Clin Immunol. 2005;114:130–6.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang W, Winkler T, Kalden JR, Reichlin M. Isolation of human anti-idiotypes broadly cross reactive with anti-dsDNA antibodies from patients with Systemic lupus erythematosus. Scand J Immunol. 2001;53:192–7.

    Article  CAS  PubMed  Google Scholar 

  36. Pall AA, Varagunam M, Adu D, Smith N, Richards NT, Taylor CM, et al. Anti-idiotypic activity against anti-myeloperoxidase antibodies in pooled human immunoglobulin. Clin Exp Immunol. 1994;95:257–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pradhan VD, Ghosh K. Anti-idiotype antibodies in immune regulation of anca associated vasculitis. Indian J Dermatol. 2009;54:258–62.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Alvarado-Flores E, Avalos-Diaz E, Diaz LA, Herrera-Esparza R. Anti-idiotype antibodies neutralize in vivo the blistering effect of Pemphigus foliaceus IgG. Scand J Immunol. 2001;53:254–8.

    Article  CAS  PubMed  Google Scholar 

  39. Bouhlal H, Martinvalet D, Teillaud JL, Fridman C, Kazatchkine MD, Bayry J, et al. Natural autoantibodies to Fcgamma receptors in intravenous immunoglobulins. J Clin Immunol. 2014;34(Suppl. 1):S4–11.

    Article  PubMed  CAS  Google Scholar 

  40. Lutz HU, Stammler P, Bianchi V, Trueb RM, Hunziker T, Burger R, et al. Intravenously applied IgG stimulates complement attenuation in a complement-dependent autoimmune disease at the amplifying C3 convertase level. Blood. 2004;103:465–72.

    Article  CAS  PubMed  Google Scholar 

  41. Machimoto T, Guerra G, Burke G, Fricker FJ, Colona J, Ruiz P, et al. Effect of IVIG administration on complement activation and HLA antibody levels. Transpl Int. 2010;23:1015–22.

    Article  CAS  PubMed  Google Scholar 

  42. Lutz HU, Stammler P, Jelezarova E, Nater M, Spath PJ. High doses of immunoglobulin G attenuate immune aggregate-mediated complement activation by enhancing physiologic cleavage of C3b in C3bn-IgG complexes. Blood. 1996;88:184–93.

    CAS  PubMed  Google Scholar 

  43. Basta M, Fries LF, Frank MM. High doses of intravenous Ig inhibit in vitro uptake of C4 fragments onto sensitized erythrocytes. Blood. 1991;77:376–80.

    CAS  PubMed  Google Scholar 

  44. Hirose M, Tiburzy B, Ishii N, Pipi E, Wende S, Rentz E, et al. Effects of intravenous immunoglobulins on mice with experimental epidermolysis bullosa acquisita. J Invest Dermatol. 2015;135:768–75.

    Article  CAS  PubMed  Google Scholar 

  45. Basta M, Langlois PF, Marques M, Frank MM, Fries LF. High-dose intravenous immunoglobulin modifies complement-mediated in vivo clearance. Blood. 1989;74:326–33.

    CAS  PubMed  Google Scholar 

  46. Wada J, Shintani N, Kikutani K, Nakae T, Yamauchi T, Takechi K. Intravenous immunoglobulin prevents experimental autoimmune myositis in SJL mice by reducing anti-myosin antibody and by blocking complement deposition. Clin Exp Immunol. 2001;124:282–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Basta M, Van Goor F, Luccioli S, Billings EM, Vortmeyer AO, Baranyi L, et al. F(ab)’2-mediated neutralization of C3a and C5a anaphylatoxins: a novel effector function of immunoglobulins. Nat Med. 2003;9:431–8.

    Article  CAS  PubMed  Google Scholar 

  48. Viard I, Wehrli P, Bullani R, Schneider P, Holler N, Salomon D, et al. Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science. 1998;282:490–3.

    Article  CAS  PubMed  Google Scholar 

  49. Trautmann A, Akdis M, Schmid-Grendelmeier P, Disch R, Brocker EB, Blaser K, et al. Targeting keratinocyte apoptosis in the treatment of atopic dermatitis and allergic contact dermatitis. J Allergy Clin Immunol. 2001;108:839–46.

    Article  CAS  PubMed  Google Scholar 

  50. Prasad NK, Papoff G, Zeuner A, Bonnin E, Kazatchkine MD, Ruberti G, et al. Therapeutic preparations of normal polyspecific IgG (IVIg) induce apoptosis in human lymphocytes and monocytes: a novel mechanism of action of IVIg involving the Fas apoptotic pathway. J Immunol. 1998;161:3781–90.

    CAS  PubMed  Google Scholar 

  51. Altznauer F, von Gunten S, Spath P, Simon HU. Concurrent presence of agonistic and antagonistic anti-CD95 autoantibodies in intravenous Ig preparations. J Allergy Clin Immunol. 2003;112:1185–90.

    Article  CAS  PubMed  Google Scholar 

  52. Sooryanarayana PN, Bonnin E, Pashov A, Ben Jilani K, Ameisen JC, et al. Phosphorylation of Bcl-2 and mitochondrial changes are associated with apoptosis of lymphoblastoid cells induced by normal immunoglobulin G. Biochem Biophys Res Commun. 1999;264:896–901.

    Article  CAS  PubMed  Google Scholar 

  53. Aoyama-Ishikawa M, Seishu A, Kawakami S, Maeshige N, Miyoshi M, Ueda T, et al. Intravenous immunoglobulin-induced neutrophil apoptosis in the lung during murine endotoxemia. Surg Infect (Larchmt). 2014;15:36–42.

    Article  Google Scholar 

  54. von Gunten S, Simon HU. Cell death modulation by intravenous immunoglobulin. J Clin Immunol. 2010;30(Suppl 1):S24–30.

    Article  CAS  Google Scholar 

  55. Arredondo J, Chernyavsky AI, Karaouni A, Grando SA. Novel mechanisms of target cell death and survival and of therapeutic action of IVIg in Pemphigus. Am J Pathol. 2005;167:1531–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Winkler J, Kroiss S, Rand ML, Azzouzi I, Annie Bang KW, Speer O, et al. Platelet apoptosis in paediatric immune thrombocytopenia is ameliorated by intravenous immunoglobulin. Br J Haematol. 2012;156:508–15.

    Article  CAS  PubMed  Google Scholar 

  57. Inci A, Sahinturk Unal D, Osman Ozes N, Erin N, Akcakus M, Oygur N. The efficacy of intravenous immunoglobulin on lipopolysaccharide-induced fetal brain inflammation in preterm rats. Am J Obstet Gynecol. 2013;209:347. e1-8

    Article  PubMed  CAS  Google Scholar 

  58. Kalay S, Oztekin O, Tezel G, Aldemir H, Sahin E, Koksoy S, et al. Role of immunoglobulin in neuronal apoptosis in a neonatal rat model of hypoxic ischemic brain injury. Exp Ther Med. 2014;7:734–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nakatani K, Takeshita S, Tsujimoto H, Sekine I. Intravenous immunoglobulin (IVIG) preparations induce apoptosis in TNF-alpha-stimulated endothelial cells via a mitochondria-dependent pathway. Clin Exp Immunol. 2002;127:445–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Widiapradja A, Vegh V, Lok KZ, Manzanero S, Thundyil J, Gelderblom M, et al. Intravenous immunoglobulin protects neurons against amyloid beta-peptide toxicity and ischemic stroke by attenuating multiple cell death pathways. J Neurochem. 2012;122:321–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ekberg C, Nordstrom E, Skansen-Saphir U, Mansouri M, Raqib R, Sundqvist VA, et al. Human polyspecific immunoglobulin for therapeutic use induces p21/WAF-1 and Bcl-2, which may be responsible for G1 arrest and long-term survival. Hum Immunol. 2001;62:215–27.

    Article  CAS  PubMed  Google Scholar 

  62. Tackenberg B, Jelcic I, Baerenwaldt A, Oertel WH, Sommer N, Nimmerjahn F, et al. Impaired inhibitory Fcgamma receptor IIB expression on B cells in chronic inflammatory demyelinating polyneuropathy. Proc Natl Acad Sci U S A. 2009;106:4788–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pincetic A, Bournazos S, DiLillo DJ, Maamary J, Wang TT, Dahan R, et al. Type I and type II Fc receptors regulate innate and adaptive immunity. Nat Immunol. 2014;15:707–16.

    Article  CAS  PubMed  Google Scholar 

  64. Smith KG, Clatworthy MR. FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol. 2010;10:328–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nikolova KA, Tchorbanov AI, Djoumerska-Alexieva IK, Nikolova M, Vassilev TL. Intravenous immunoglobulin up-regulates the expression of the inhibitory FcgammaIIB receptor on B cells. Immunol Cell Biol. 2009;87:529–33.

    Article  CAS  PubMed  Google Scholar 

  66. Takai T, Ono M, Hikida M, Ohmori H, Ravetch JV. Augmented humoral and anaphylactic responses in Fc gamma RII-deficient mice. Nature. 1996;379:346–9.

    Article  CAS  PubMed  Google Scholar 

  67. Kalergis AM, Ravetch JV. Inducing tumor immunity through the selective engagement of activating Fcgamma receptors on dendritic cells. J Exp Med. 2002;195:1653–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Clynes R, Maizes JS, Guinamard R, Ono M, Takai T, Ravetch JV. Modulation of immune complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. J Exp Med. 1999;189:179–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Clatworthy MR, Smith KG. FcgammaRIIb balances efficient pathogen clearance and the cytokine-mediated consequences of sepsis. J Exp Med. 2004;199:717–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Daeron M, Malbec O, Latour S, Arock M, Fridman WH. Regulation of high-affinity IgE receptor-mediated mast cell activation by murine low-affinity IgG receptors. J Clin Invest. 1995;95:577–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fong DC, Malbec O, Arock M, Cambier JC, Fridman WH, Daeron M. Selective in vivo recruitment of the phosphatidylinositol phosphatase SHIP by phosphorylated Fc gammaRIIB during negative regulation of IgE-dependent mouse mast cell activation. Immunol Lett. 1996;54:83–91.

    Article  CAS  PubMed  Google Scholar 

  72. Samuelsson A, Towers TL, Ravetch JV. Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science. 2001;291:484–6.

    Article  CAS  PubMed  Google Scholar 

  73. Kaneko Y, Nimmerjahn F, Madaio MP, Ravetch JV. Pathology and protection in nephrotoxic nephritis is determined by selective engagement of specific Fc receptors. J Exp Med. 2006;203:789–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bruhns P, Samuelsson A, Pollard JW, Ravetch JV. Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity. 2003;18:573–81.

    Article  CAS  PubMed  Google Scholar 

  75. Anthony RM, Wermeling F, Karlsson MC, Ravetch JV. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci U S A. 2008;105:19571–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nakamura A, Yuasa T, Ujike A, Ono M, Nukiwa T, Ravetch JV, et al. Fcgamma receptor IIB-deficient mice develop Goodpasture’s syndrome upon immunization with type IV collagen: a novel murine model for autoimmune glomerular basement membrane disease. J Exp Med. 2000;191:899–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McGaha TL, Sorrentino B, Ravetch JV. Restoration of tolerance in lupus by targeted inhibitory receptor expression. Science. 2005;307:590–3.

    Article  CAS  PubMed  Google Scholar 

  78. Mackay M, Stanevsky A, Wang T, Aranow C, Li M, Koenig S, et al. Selective dysregulation of the FcgammaIIB receptor on memory B cells in SLE. J Exp Med. 2006;203:2157–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kadono T, Tomita M, Tamaki Z, Sato S, Asano Y. Serum levels of anti-Fcgamma receptor IIB/C antibodies are increased in patients with systemic sclerosis. J Dermatol. 2014;41:1009–12.

    Article  CAS  PubMed  Google Scholar 

  80. Siragam V, Crow AR, Brinc D, Song S, Freedman J, Lazarus AH. Intravenous immunoglobulin ameliorates ITP via activating Fc gamma receptors on dendritic cells. Nat Med. 2006;12:688–92.

    Article  CAS  PubMed  Google Scholar 

  81. Bazin R, Lemieux R, Tremblay T. Reversal of immune thrombocytopenia in mice by cross-linking human immunoglobulin G with a high-affinity monoclonal antibody. Br J Haematol. 2006;135:97–100.

    Article  CAS  PubMed  Google Scholar 

  82. Nagelkerke SQ, Dekkers G, Kustiawan I, van de Bovenkamp FS, Geissler J, Plomp R, et al. Inhibition of FcgammaR-mediated phagocytosis by IVIg is independent of IgG-Fc sialylation and FcgammaRIIb in human macrophages. Blood. 2014;124:3709–18.

    Article  CAS  PubMed  Google Scholar 

  83. Aubin E, Lemieux R, Bazin R. Indirect inhibition of in vivo and in vitro T-cell responses by intravenous immunoglobulins due to impaired antigen presentation. Blood. 2010;115:1727–34.

    Article  CAS  PubMed  Google Scholar 

  84. Akilesh S, Christianson GJ, Roopenian DC, Shaw AS. Neonatal FcR expression in bone marrow-derived cells functions to protect serum IgG from catabolism. J Immunol. 2007;179:4580–8.

    Article  CAS  PubMed  Google Scholar 

  85. Li N, Zhao M, Hilario-Vargas J, Prisayanh P, Warren S, Diaz LA, et al. Complete FcRn dependence for intravenous Ig therapy in autoimmune skin blistering diseases. J Clin Invest. 2005;115:3440–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Grando SA, Pittelkow MR. Pseudo pemphigus phenotypes in mice with inactivated desmoglein 3: further insight to the complexity of pemphigus pathophysiology. Am J Pathol. 2015;185:3125–7.

    Article  PubMed  Google Scholar 

  87. Chen Y, Chernyavsky A, Webber RJ, Grando SA, Wang PH. Critical Role of the Neonatal Fc Receptor (FcRn) in the pathogenic action of antimitochondrial autoantibodies synergizing with anti-desmoglein autoantibodies in pemphigus vulgaris. J Biol Chem. 2015;290:23826–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Akilesh S, Petkova S, Sproule TJ, Shaffer DJ, Christianson GJ, Roopenian D. The MHC class I-like Fc receptor promotes humorally mediated autoimmune disease. J Clin Invest. 2004;113:1328–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Crow AR, Suppa SJ, Chen X, Mott PJ, Lazarus AH. The neonatal Fc receptor (FcRn) is not required for IVIg or anti-CD44 monoclonal antibody-mediated amelioration of murine immune thrombocytopenia. Blood. 2011;118:6403–6.

    Article  CAS  PubMed  Google Scholar 

  90. Dalziel M, Crispin M, Scanlan CN, Zitzmann N, Dwek RA. Emerging principles for the therapeutic exploitation of glycosylation. Science. 2014;343:1235681.

    Article  PubMed  CAS  Google Scholar 

  91. Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science. 2006;313:670–3.

    Article  CAS  PubMed  Google Scholar 

  92. Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science. 2008;320:373–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Oefner CM, Winkler A, Hess C, Lorenz AK, Holecska V, Huxdorf M, et al. Tolerance induction with T cell-dependent protein antigens induces regulatory sialylated IgGs. J Allergy Clin Immunol. 2012;129:1647–55. e13

    Article  CAS  PubMed  Google Scholar 

  94. Washburn N, Schwab I, Ortiz D, Bhatnagar N, Lansing JC, Medeiros A, et al. Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity. Proc Natl Acad Sci U S A. 2015;112:E1297–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen XX, Chen YQ, Ye S. Measuring decreased serum IgG sialylation: a novel clinical biomarker of lupus. Lupus. 2015;24:948–54.

    Article  CAS  PubMed  Google Scholar 

  96. Parekh RB, Roitt IM, Isenberg DA, Dwek RA, Ansell BM, Rademacher TW. Galactosylation of IgG associated oligosaccharides: reduction in patients with adult and juvenile onset rheumatoid arthritis and relation to disease activity. Lancet. 1988;1:966–9.

    Article  CAS  PubMed  Google Scholar 

  97. Fokkink WJ, Selman MH, Dortland JR, Durmus B, Kuitwaard K, Huizinga R, et al. IgG Fc N-glycosylation in Guillain-Barre syndrome treated with immunoglobulins. J Proteome Res. 2014;13:1722–30.

    Article  CAS  PubMed  Google Scholar 

  98. Fiebiger BM, Maamary J, Pincetic A, Ravetch JV. Protection in antibody- and T cell-mediated autoimmune diseases by antiinflammatory IgG Fcs requires type II FcRs. Proc Natl Acad Sci U S A. 2015;112:E2385–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sondermann P, Pincetic A, Maamary J, Lammens K, Ravetch JV. General mechanism for modulating immunoglobulin effector function. Proc Natl Acad Sci U S A. 2013;110:9868–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Anthony RM, Kobayashi T, Wermeling F, Ravetch JV. Intravenous gammaglobulin suppresses inflammation through a novel T(H)2 pathway. Nature. 2011;475:110–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Schwab I, Mihai S, Seeling M, Kasperkiewicz M, Ludwig RJ, Nimmerjahn F. Broad requirement for terminal sialic acid residues and FcgammaRIIB for the preventive and therapeutic activity of intravenous immunoglobulins in vivo. Eur J Immunol. 2014;44:1444–53.

    Article  CAS  PubMed  Google Scholar 

  102. Bayry J, Bansal K, Kazatchkine MD, Kaveri SV. DC-SIGN and alpha2,6-sialylated IgG Fc interaction is dispensable for the anti-inflammatory activity of IVIg on human dendritic cells. Proc Natl Acad Sci U S A. 2009;106:E24. author reply E5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yu X, Vasiljevic S, Mitchell DA, Crispin M, Scanlan CN. Dissecting the molecular mechanism of IVIg therapy: the interaction between serum IgG and DC-SIGN is independent of antibody glycoform or Fc domain. J Mol Biol. 2013;425(8):1253.

    Article  CAS  PubMed  Google Scholar 

  104. Caminschi I, Corbett AJ, Zahra C, Lahoud M, Lucas KM, Sofi M, et al. Functional comparison of mouse CIRE/mouse DC-SIGN and human DC-SIGN. Int Immunol. 2006;18:741–53.

    Article  CAS  PubMed  Google Scholar 

  105. Gelfand EW. Intravenous immune globulin in autoimmune and inflammatory diseases. N Engl J Med. 2012;367:2015–25.

    Article  CAS  PubMed  Google Scholar 

  106. Schwab I, Lux A, Nimmerjahn F. Pathways responsible for human autoantibody and therapeutic intravenous IgG activity in humanized mice. Cell Rep. 2015;13:610–20.

    Article  CAS  PubMed  Google Scholar 

  107. Quast I, Keller CW, Maurer MA, Giddens JP, Tackenberg B, Wang LX, et al. Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity. J Clin Invest. 2015;125:4160–70.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kasermann F, Boerema DJ, Ruegsegger M, Hofmann A, Wymann S, Zuercher AW, et al. Analysis and functional consequences of increased Fab-sialylation of intravenous immunoglobulin (IVIG) after lectin fractionation. PLoS One. 2012;7:e37243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Issekutz AC, Rowter D, Miescher S, Kasermann F. Intravenous IgG (IVIG) and subcutaneous IgG (SCIG) preparations have comparable inhibitory effect on T cell activation, which is not dependent on IgG sialylation, monocytes or B cells. Clin Immunol. 2015;160:123–32.

    Article  CAS  PubMed  Google Scholar 

  110. Ramakrishna C, Cantin EM. Fc-sialylated IgGs in intravenous immunoglobulins are not responsible for induction of regulatory T cells. J Allergy Clin Immunol. 2014;134:1469.

    Article  CAS  PubMed  Google Scholar 

  111. Othy S, Topcu S, Saha C, Kothapalli P, Lacroix-Desmazes S, Kasermann F, et al. Sialylation may be dispensable for reciprocal modulation of helper T cells by intravenous immunoglobulin. Eur J Immunol. 2014;44:2059–63.

    Article  CAS  PubMed  Google Scholar 

  112. Jerzak M, Rechberger T, Gorski A. Intravenous immunoglobulin therapy influences T cell adhesion to extracellular matrix in women with a history of recurrent spontaneous abortions. Am J Reprod Immunol. 2000;44:336–41.

    Article  CAS  PubMed  Google Scholar 

  113. Huang JL, Lee WY, Chen LC, Kuo ML, Hsieh KH. Changes of serum levels of interleukin-2, intercellular adhesion molecule-1, endothelial leukocyte adhesion molecule-1 and Th1 and Th2 cell in severe atopic dermatitis after intravenous immunoglobulin therapy. Ann Allergy Asthma Immunol. 2000;84:345–52.

    Article  CAS  PubMed  Google Scholar 

  114. Vassilev TL, Kazatchkine MD, Duong Van Huyen JP, Mekrache M, Bonnin E, Mani JC, et al. Inhibition of cell adhesion by antibodies to Arg-Gly-Asp (RGD) in normal immunoglobulin for therapeutic use (intravenous immunoglobulin, IVIg). Blood. 1999;93:3624–31.

    CAS  PubMed  Google Scholar 

  115. Spahn JD, Leung DY, Chan MT, Szefler SJ, Gelfand EW. Mechanisms of glucocorticoid reduction in asthmatic subjects treated with intravenous immunoglobulin. J Allergy Clin Immunol. 1999;103:421–6.

    Article  CAS  PubMed  Google Scholar 

  116. Pashov A, Delignat S, Bayry J, Kaveri SV. Enhancement of the affinity of glucocorticoid receptors as a mechanism underlying the steroid-sparing effect of intravenous immunoglobulin. J Rheumatol. 2011;38:2275.

    Article  PubMed  Google Scholar 

  117. Siragam V, Brinc D, Crow AR, Song S, Freedman J, Lazarus AH. Can antibodies with specificity for soluble antigens mimic the therapeutic effects of intravenous IgG in the treatment of autoimmune disease? J Clin Invest. 2005;115:155–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bayry J, Lacroix-Desmazes S, Carbonneil C, Misra N, Donkova V, Pashov A, et al. Inhibition of maturation and function of dendritic cells by intravenous immunoglobulin. Blood. 2003;101:758–65.

    Article  CAS  PubMed  Google Scholar 

  119. Bayry J, Lacroix-Desmazes S, Delignat S, Mouthon L, Weill B, Kazatchkine MD, et al. Intravenous immunoglobulin abrogates dendritic cell differentiation induced by interferon-alpha present in serum from patients with systemic lupus erythematosus. Arthritis Rheum. 2003;48:3497–502.

    Article  CAS  PubMed  Google Scholar 

  120. Sandvik LF, Skarstein K, Sviland L, Svarstad E, Nilsen AE, Leivestad T, et al. CD11c(+) dendritic cells rather than Langerhans cells are reduced in normal skin of immunosuppressed renal transplant recipients. Acta Derm Venereol. 2014;94:173–8.

    Article  CAS  PubMed  Google Scholar 

  121. Ito T, Inaba M, Inaba K, Toki J, Sogo S, Iguchi T, et al. A CD1a+/CD11c+ subset of human blood dendritic cells is a direct precursor of Langerhans cells. J Immunol. 1999;163:1409–19.

    CAS  PubMed  Google Scholar 

  122. Crow AR, Song S, Semple JW, Freedman J, Lazarus AH. A role for IL-1 receptor antagonist or other cytokines in the acute therapeutic effects of IVIg? Blood. 2007;109:155–8.

    Article  CAS  PubMed  Google Scholar 

  123. Aubin E, Lemieux R, Bazin R. Absence of cytokine modulation following therapeutic infusion of intravenous immunoglobulin or anti-red blood cell antibodies in a mouse model of immune thrombocytopenic purpura. Br J Haematol. 2007;136:837–43.

    Article  CAS  PubMed  Google Scholar 

  124. Park-Min KH, Serbina NV, Yang W, Ma X, Krystal G, Neel BG, et al. FcgammaRIII-dependent inhibition of interferon-gamma responses mediates suppressive effects of intravenous immune globulin. Immunity. 2007;26:67–78.

    Article  CAS  PubMed  Google Scholar 

  125. Trepanier P, Aubin E, Bazin R. IVIg-mediated inhibition of antigen presentation: predominant role of naturally occurring cationic IgG. Clin Immunol. 2012;142:383–9.

    Article  CAS  PubMed  Google Scholar 

  126. Smed-Sorensen A, Moll M, Cheng TY, Lore K, Norlin AC, Perbeck L, et al. IgG regulates the CD1 expression profile and lipid antigen-presenting function in human dendritic cells via FcgammaRIIa. Blood. 2008;111:5037–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Abe Y, Miyake M, Sagawa T, Kimura S. Enzyme-linked immunosorbent assay (ELISA) for human tumor necrosis factor (hTNF). Clin Chim Acta. 1988;176:213–7.

    Article  CAS  PubMed  Google Scholar 

  128. Abe Y, Horiuchi A, Miyake M, Kimura S. Anti-cytokine nature of natural human immunoglobulin: one possible mechanism of the clinical effect of intravenous immunoglobulin therapy. Immunol Rev. 1994;139:5–19.

    Article  CAS  PubMed  Google Scholar 

  129. Reitamo S, Remitz A, Varga J, Ceska M, Effenberger F, Jimenez S, et al. Demonstration of interleukin 8 and autoantibodies to interleukin 8 in the serum of patients with systemic sclerosis and related disorders. Arch Dermatol. 1993;129:189–93.

    Article  CAS  PubMed  Google Scholar 

  130. Toungouz M, Denys CH, De Groote D, Dupont E. In vitro inhibition of tumour necrosis factor-alpha and interleukin-6 production by intravenous immunoglobulins. Br J Haematol. 1995;89:698–703.

    Article  CAS  PubMed  Google Scholar 

  131. Denys C, Toungouz M, Dupont E. Increased in vitro immunosuppressive action of anti-CMV and anti-HBs intravenous immunoglobulins due to higher amounts of interferon-gamma specific neutralizing antibodies. Vox Sang. 1997;72:247–50.

    Article  CAS  PubMed  Google Scholar 

  132. Andersson UG, Bjork L, Skansen-Saphir U, Andersson JP. Down-regulation of cytokine production and interleukin-2 receptor expression by pooled human IgG. Immunology. 1993;79:211–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Andersson U, Bjork L, Skansen-Saphir U, Andersson J. Pooled human IgG modulates cytokine production in lymphocytes and monocytes. Immunol Rev. 1994;139:21–42.

    Article  CAS  PubMed  Google Scholar 

  134. Andersson J, Skansen-Saphir U, Sparrelid E, Andersson U. Intravenous immune globulin affects cytokine production in T lymphocytes and monocytes/macrophages. Clin Exp Immunol. 1996;104(Suppl 1):10–20.

    CAS  PubMed  Google Scholar 

  135. Ghio M, Contini P, Setti M, Ubezio G, Mazzei C, Tripodi G. sHLA-I Contamination, a novel mechanism to explain ex vivo/in vitro modulation of IL-10 synthesis and release in CD8(+) T lymphocytes and in neutrophils following intravenous immunoglobulin infusion. J Clin Immunol. 2010;30:384–92.

    Article  CAS  PubMed  Google Scholar 

  136. Cooper N, Heddle NM, Haas M, Reid ME, Lesser ML, Fleit HB, et al. Intravenous (IV) anti-D and IV immunoglobulin achieve acute platelet increases by different mechanisms: modulation of cytokine and platelet responses to IV anti-D by FcgammaRIIa and FcgammaRIIIa polymorphisms. Br J Haematol. 2004;124:511–8.

    Article  CAS  PubMed  Google Scholar 

  137. Mouzaki A, Theodoropoulou M, Gianakopoulos I, Vlaha V, Kyrtsonis MC, Maniatis A. Expression patterns of Th1 and Th2 cytokine genes in childhood idiopathic thrombocytopenic purpura (ITP) at presentation and their modulation by intravenous immunoglobulin G (IVIg) treatment: their role in prognosis. Blood. 2002;100:1774–9.

    CAS  PubMed  Google Scholar 

  138. Bhol KC, Desai A, Kumari S, Colon JE, Ahmed AR. Pemphigus vulgaris: the role of IL-1 and IL-1 receptor antagonist in pathogenesis and effects of intravenous immunoglobulin on their production. Clin Immunol. 2001;100:172–80.

    Article  CAS  PubMed  Google Scholar 

  139. Schwaighofer H, Oberhuber G, Hebart H, Einsele H, Herold M, Nachbaur D, et al. Endogenous interleukin 1 receptor antagonist during human bone marrow transplantation: increased levels during graft-versus-host disease, during infectious complications, and after immunoglobulin therapy. Transplantation. 1997;63:52–6.

    Article  CAS  PubMed  Google Scholar 

  140. Sigman K, Ghibu F, Sommerville W, Toledano BJ, Bastein Y, Cameron L, et al. Intravenous immunoglobulin inhibits IgE production in human B lymphocytes. J Allergy Clin Immunol. 1998;102:421–7.

    Article  CAS  PubMed  Google Scholar 

  141. Zhuang Q, Mazer B. Inhibition of IgE production in vitro by intact and fragmented intravenous immunoglobulin. J Allergy Clin Immunol. 2001;108:229–34.

    Article  CAS  PubMed  Google Scholar 

  142. Hashimoto T, Ohzono A, Teye K, Numata S, Hiroyasu S, Tsuruta D, et al. Detection of IgE autoantibodies to BP180 and BP230 and their relationship to clinical features in bullous pemphigoid. Br J Dermatol. 2016

    Google Scholar 

  143. van Beek N, Luttmann N, Huebner F, Recke A, Karl I, Schulze FS, et al. Correlation of Serum Levels of IgE Autoantibodies Against BP180 With Bullous Pemphigoid Disease Activity. JAMA Dermatol. 2017;153:30–8.

    Article  PubMed  Google Scholar 

  144. Toyoda M, Pao A, Petrosian A, Jordan SC. Pooled human gammaglobulin modulates surface molecule expression and induces apoptosis in human B cells. Am J Transplant. 2003;3:156–66.

    Article  CAS  PubMed  Google Scholar 

  145. Vassilev T, Gelin C, Kaveri SV, Zilber MT, Boumsell L, Kazatchkine MD. Antibodies to the CD5 molecule in normal human immunoglobulins for therapeutic use (intravenous immunoglobulins, IVIg). Clin Exp Immunol. 1993;92:369–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Le Pottier L, Sapir T, Bendaoud B, Youinou P, Shoenfeld Y, Pers JO. Intravenous immunoglobulin and cytokines: focus on tumor necrosis factor family members BAFF and APRIL. Ann N Y Acad Sci. 2007;1110:426–32.

    Article  PubMed  CAS  Google Scholar 

  147. Mohamed Ezzat MH, Mohammed AA, Ismail RI, Shaheen KY. High serum APRIL levels strongly correlate with disease severity in pediatric atopic eczema. Int J Dermatol. 2016;

    Google Scholar 

  148. Chasset F, De Masson A, Le Buanec H, Xhaard A, Sicre de Fontbrune F, Robin M, et al. APRIL levels are associated with disease activity in human chronic graft versus host disease. Haematologica. 2016;

    Google Scholar 

  149. Chong BF, Tseng LC, Kim A, Miller RT, Yancey KB, Hosler GA. Differential expression of BAFF and its receptors in discoid lupus erythematosus patients. J Dermatol Sci. 2014;73:216–24.

    Article  CAS  PubMed  Google Scholar 

  150. Ueda-Hayakawa I, Tanimura H, Osawa M, Iwasaka H, Ohe S, Yamazaki F, et al. Elevated serum BAFF levels in patients with sarcoidosis: association with disease activity. Rheumatology (Oxford). 2013;52:1658–66.

    Article  CAS  Google Scholar 

  151. Baek A, Park HJ, Na SJ, Shim DS, Moon JS, Yang Y, et al. The expression of BAFF in the muscles of patients with dermatomyositis. J Neuroimmunol. 2012;249:96–100.

    Article  CAS  PubMed  Google Scholar 

  152. Shaker OG, Tawfic SO, El-Tawdy AM, El-Komy MH, El Menyawi M, Heikal AA. Expression of TNF-alpha, APRIL and BCMA in Behcet’s disease. J Immunol Res. 2014;2014:380405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Samoud-El Kissi S, Galai Y, Sghiri R, Kenani N, Ben Alaya-Bouafif N, Boukadida J, et al. BAFF is elevated in serum of patients with psoriasis: association with disease activity. Br J Dermatol. 2008;159:765–8.

    Article  CAS  PubMed  Google Scholar 

  154. Matsushita T, Fujimoto M, Hasegawa M, Tanaka C, Kumada S, Ogawa F, et al. Elevated serum APRIL levels in patients with systemic sclerosis: distinct profiles of systemic sclerosis categorized by APRIL and BAFF. J Rheumatol. 2007;34:2056–62.

    CAS  PubMed  Google Scholar 

  155. Matsushita T, Fujimoto M, Hasegawa M, Matsushita Y, Komura K, Ogawa F, et al. BAFF antagonist attenuates the development of skin fibrosis in tight-skin mice. J Invest Dermatol. 2007;127:2772–80.

    Article  CAS  PubMed  Google Scholar 

  156. Matsushita T, Hasegawa M, Matsushita Y, Echigo T, Wayaku T, Horikawa M, et al. Elevated serum BAFF levels in patients with localized scleroderma in contrast to other organ-specific autoimmune diseases. Exp Dermatol. 2007;16:87–93.

    Article  CAS  PubMed  Google Scholar 

  157. Qian H, Kusuhara M, Li X, Tsuruta D, Tsuchisaka A, Ishii N, et al. B-cell activating factor detected on both naive and memory B cells in bullous pemphigoid. Exp Dermatol. 2014;23:596–605.

    Article  CAS  PubMed  Google Scholar 

  158. Asashima N, Fujimoto M, Watanabe R, Nakashima H, Yazawa N, Okochi H, et al. Serum levels of BAFF are increased in bullous pemphigoid but not in pemphigus vulgaris. Br J Dermatol. 2006;155:330–6.

    Article  CAS  PubMed  Google Scholar 

  159. Nagel A, Podstawa E, Eickmann M, Muller HH, Hertl M, Eming R. Rituximab mediates a strong elevation of B-cell-activating factor associated with increased pathogen-specific IgG but not autoantibodies in pemphigus vulgaris. J Invest Dermatol. 2009;129:2202–10.

    Article  CAS  PubMed  Google Scholar 

  160. Kabuto M, Fujimoto N, Tanaka T. Increase of interleukin-10-producing B cells associated with long-term remission after i.v. immunoglobulin treatment for pemphigus. J Dermatol 2016.

    Google Scholar 

  161. Kawada K, Terasaki PI. Evidence for immunosuppression by high-dose gammaglobulin. Exp Hematol. 1987;15:133–6.

    CAS  PubMed  Google Scholar 

  162. Amran D, Renz H, Lack G, Bradley K, Gelfand EW. Suppression of cytokine-dependent human T-cell proliferation by intravenous immunoglobulin. Clin Immunol Immunopathol. 1994;73:180–6.

    Article  CAS  PubMed  Google Scholar 

  163. Hurez V, Kaveri SV, Mouhoub A, Dietrich G, Mani JC, Klatzmann D, et al. Anti-CD4 activity of normal human immunoglobulin G for therapeutic use. (Intravenous immunoglobulin, IVIg). Ther Immunol. 1994;1:269–77.

    CAS  PubMed  Google Scholar 

  164. Marchalonis JJ, Kaymaz H, Dedeoglu F, Schluter SF, Yocum DE, Edmundson AB. Human autoantibodies reactive with synthetic autoantigens from T-cell receptor beta chain. Proc Natl Acad Sci U S A. 1992;89:3325–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Aktas O, Waiczies S, Grieger U, Wendling U, Zschenderlein R, Zipp F. Polyspecific immunoglobulins (IVIg) suppress proliferation of human (auto)antigen-specific T cells without inducing apoptosis. J Neuroimmunol. 2001;114:160–7.

    Article  CAS  PubMed  Google Scholar 

  166. van Schaik IN, Vermeulen M, Brand A. In vitro effects of polyvalent immunoglobulin for intravenous use. J Neurol Neurosurg Psychiatry. 1994;57(Suppl):15–7.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Trepanier P, Chabot D, Bazin R. Intravenous immunoglobulin modulates the expansion and cytotoxicity of CD8+ T cells. Immunology. 2014;141:233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Klehmet J, Meisel C, Meisel A. Efficiency of long-term treatment with intravenous immunoglobulins correlates with reduced autoreactive T cell responses in chronic inflammatory demyelinating polyneuropathy patients. Clin Exp Immunol. 2014;178(Suppl 1):149–50.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Han YM, Sheng YY, Xu F, Qi SS, Liu XJ, RM H, et al. Imbalance of T-helper 17 and regulatory T cells in patients with alopecia areata. J Dermatol. 2015;42:981–8.

    Article  CAS  PubMed  Google Scholar 

  170. Asothai R, Anand V, Das D, Antil PS, Khandpur S, Sharma VK, et al. Distinctive Treg associated CCR4-CCL22 expression profile with altered frequency of Th17/Treg cell in the immunopathogenesis of Pemphigus Vulgaris. Immunobiology. 2015;220:1129–35.

    Article  CAS  PubMed  Google Scholar 

  171. Arakawa M, Dainichi T, Ishii N, Hamada T, Karashima T, Nakama T, et al. Lesional Th17 cells and regulatory T cells in bullous pemphigoid. Exp Dermatol. 2011;20:1022–4.

    Article  CAS  PubMed  Google Scholar 

  172. Yang J, Chu Y, Yang X, Gao D, Zhu L, Yang X, et al. Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheum. 2009;60:1472–83.

    Article  PubMed  Google Scholar 

  173. Elela MA, Gawdat HI, Hegazy RA, Fawzy MM, Abdel Hay RM, Saadi D, et al. B cell activating factor and T-helper 17 cells: possible synergistic culprits in the pathogenesis of Alopecia Areata. Arch Dermatol Res. 2016;308:115–21.

    Article  CAS  PubMed  Google Scholar 

  174. Bonefeld CM, Petersen TH, Bandier J, Agerbeck C, Linneberg A, Ross-Hansen K, et al. Epidermal filaggrin deficiency mediates increased systemic Th17 immune response. Br J Dermatol 2016.

    Google Scholar 

  175. Othy S, Hegde P, Topcu S, Sharma M, Maddur MS, Lacroix-Desmazes S, et al. Intravenous gammaglobulin inhibits encephalitogenic potential of pathogenic T cells and interferes with their trafficking to the central nervous system, implicating sphingosine-1 phosphate receptor 1-mammalian target of rapamycin axis. J Immunol. 2013;190:4535–41.

    Article  CAS  PubMed  Google Scholar 

  176. Yang J, Yang X, Zou H, Chu Y, Li M. Recovery of the immune balance between Th17 and regulatory T cells as a treatment for systemic lupus erythematosus. Rheumatology (Oxford). 2011;50:1366–72.

    Article  CAS  Google Scholar 

  177. RC X, Zhu HQ, Li WP, Zhao XQ, Yuan HJ, Zheng J, et al. The imbalance of Th17 and regulatory T cells in pemphigus patients. Eur J Dermatol. 2013;23:795–802.

    Google Scholar 

  178. Maddur MS, Sharma M, Hegde P, Lacroix-Desmazes S, Kaveri SV, Bayry J. Inhibitory effect of IVIG on IL-17 production by Th17 cells is independent of anti-IL-17 antibodies in the immunoglobulin preparations. J Clin Immunol. 2013;33(Suppl 1):S62–6.

    Article  PubMed  CAS  Google Scholar 

  179. Milovanovic M, Drozdenko G, Weise C, Babina M, Worm M. Interleukin-17A promotes IgE production in human B cells. J Invest Dermatol. 2010;130:2621–8.

    Article  CAS  PubMed  Google Scholar 

  180. Piccirillo CA, Shevach EM. Naturally-occurring CD4+CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance. Semin Immunol. 2004;16:81–8.

    Article  CAS  PubMed  Google Scholar 

  181. Antiga E, Quaglino P, Pierini I, Volpi W, Lami G, Bianchi B, et al. Regulatory T cells as well as IL-10 are reduced in the skin of patients with dermatitis herpetiformis. J Dermatol Sci. 2015;77:54–62.

    Article  CAS  PubMed  Google Scholar 

  182. Hadaschik EN, Wei X, Leiss H, Heckmann B, Niederreiter B, Steiner G, et al. Regulatory T cell-deficient scurfy mice develop systemic autoimmune features resembling lupus-like disease. Arthritis Res Ther. 2015;17:35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Yu J, Heck S, Patel V, Levan J, Yu Y, Bussel JB, et al. Defective circulating CD25 regulatory T cells in patients with chronic immune thrombocytopenic purpura. Blood. 2008;112:1325–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Olivito B, Taddio A, Simonini G, Massai C, Ciullini S, Gambineri E, et al. Defective FOXP3 expression in patients with acute Kawasaki disease and restoration by intravenous immunoglobulin therapy. Clin Exp Rheumatol. 2010;28:93–7.

    PubMed  Google Scholar 

  185. Tsurikisawa N, Saito H, Oshikata C, Tsuburai T, Akiyama K. High-dose intravenous immunoglobulin treatment increases regulatory T cells in patients with eosinophilic granulomatosis with polyangiitis. J Rheumatol. 2012;39:1019–25.

    Article  CAS  PubMed  Google Scholar 

  186. Sugiyama H, Matsue H, Nagasaka A, Nakamura Y, Tsukamoto K, Shibagaki N, et al. CD4+CD25high regulatory T cells are markedly decreased in blood of patients with pemphigus vulgaris. Dermatology. 2007;214:210–20.

    Article  CAS  PubMed  Google Scholar 

  187. Sun RS, Sui JF, Chen XH, Ran XZ, Yang ZF, Guan WD, et al. Detection of CD4+ CD25+ FOXP3+ regulatory T cells in peripheral blood of patients with chronic autoimmune urticaria. Australas J Dermatol. 2011;52:e15–8.

    Article  PubMed  Google Scholar 

  188. Antiga E, Quaglino P, Volpi W, Pierini I, Del Bianco E, Bianchi B, et al. Regulatory T cells in skin lesions and blood of patients with bullous pemphigoid. J Eur Acad Dermatol Venereol. 2014;28:222–30.

    Article  CAS  PubMed  Google Scholar 

  189. Gambichler T, Patzholz J, Schmitz L, Lahner N, Kreuter A. FOXP3+ and CD39+ regulatory T cells in subtypes of cutaneous lupus erythematosus. J Eur Acad Dermatol Venereol. 2015;29:1972–7.

    Article  CAS  PubMed  Google Scholar 

  190. Tembhre MK, Parihar AS, Sharma VK, Sharma A, Chattopadhyay P, Gupta S. Alteration in regulatory T cells and programmed cell death 1-expressing regulatory T cells in active generalized vitiligo and their clinical correlation. Br J Dermatol. 2015;172:940–50.

    Article  CAS  PubMed  Google Scholar 

  191. Wang YY, Wang Q, Sun XH, Liu RZ, Shu Y, Kanekura T, et al. DNA hypermethylation of the forkhead box protein 3 (FOXP3) promoter in CD4+ T cells of patients with systemic sclerosis. Br J Dermatol. 2014;171:39–47.

    Article  CAS  PubMed  Google Scholar 

  192. Lili Y, Yi W, Ji Y, Yue S, Weimin S, Ming L. Global activation of CD8+ cytotoxic T lymphocytes correlates with an impairment in regulatory T cells in patients with generalized vitiligo. PLoS One. 2012;7:e37513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Schweintzger N, Gruber-Wackernagel A, Reginato E, Bambach I, Quehenberger F, Byrne SN, et al. Levels and function of regulatory T cells in patients with polymorphic light eruption: relation to photohardening. Br J Dermatol. 2015;173:519–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Costa N, Pires AE, Gabriel AM, Goulart LF, Pereira C, Leal B, et al. Broadened T-cell repertoire diversity in ivIg-treated SLE patients is also related to the individual status of regulatory T-cells. J Clin Immunol. 2013;33:349–60.

    Article  CAS  PubMed  Google Scholar 

  195. Tjon AS, Tha-In T, Metselaar HJ, van Gent R, van der Laan LJ, Groothuismink ZM, et al. Patients treated with high-dose intravenous immunoglobulin show selective activation of regulatory T cells. Clin Exp Immunol. 2013;173:259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Ephrem A, Chamat S, Miquel C, Fisson S, Mouthon L, Caligiuri G, et al. Expansion of CD4+CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis. Blood. 2008;111:715–22.

    Article  CAS  PubMed  Google Scholar 

  197. Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008;8:523–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Trinath J, Hegde P, Sharma M, Maddur MS, Rabin M, Vallat JM, et al. Intravenous immunoglobulin expands regulatory T cells via induction of cyclooxygenase-2-dependent prostaglandin E2 in human dendritic cells. Blood. 2013;122:1419–27.

    Article  CAS  PubMed  Google Scholar 

  199. Tha-In T, Metselaar HJ, Bushell AR, Kwekkeboom J, Wood KJ. Intravenous immunoglobulins promote skin allograft acceptance by triggering functional activation of CD4+Foxp3+ T cells. Transplantation. 2010;89:1446–55.

    Article  CAS  PubMed  Google Scholar 

  200. Barreto M, Ferreira RC, Lourenco L, Moraes-Fontes MF, Santos E, Alves M, et al. Low frequency of CD4+CD25+ Treg in SLE patients: a heritable trait associated with CTLA4 and TGFbeta gene variants. BMC Immunol. 2009;10:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Anthony RM, Ravetch JVA. novel role for the IgG Fc glycan: the anti-inflammatory activity of sialylated IgG Fcs. J Clin Immunol. 2010;30(Suppl 1):S9–14.

    Article  CAS  PubMed  Google Scholar 

  202. Franco A, Touma R, Song Y, Shimizu C, Tremoulet AH, Kanegaye JT, et al. Specificity of regulatory T cells that modulate vascular inflammation. Autoimmunity. 2014;47:95–104.

    Article  CAS  PubMed  Google Scholar 

  203. De Groot AS, Moise L, McMurry JA, Wambre E, Van Overtvelt L, Moingeon P, et al. Activation of natural regulatory T cells by IgG Fc-derived peptide "Tregitopes". Blood. 2008;112:3303–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Cousens LP, Najafian N, Mingozzi F, Elyaman W, Mazer B, Moise L, et al. vitro and in vivo studies of IgG-derived Treg epitopes (Tregitopes): a promising new tool for tolerance induction and treatment of autoimmunity. J Clin Immunol. 2013;33(Suppl 1):S43–9.

    Article  PubMed  CAS  Google Scholar 

  205. Moretta L, Ferlazzo G, Bottino C, Vitale M, Pende D, Mingari MC, et al. Effector and regulatory events during natural killer-dendritic cell interactions. Immunol Rev. 2006;214:219–28.

    Article  CAS  PubMed  Google Scholar 

  206. Bohn AB, Nederby L, Harbo T, Skovbo A, Vorup-Jensen T, Krog J, et al. The effect of IgG levels on the number of natural killer cells and their Fc receptors in chronic inflammatory demyelinating polyradiculoneuropathy. Eur J Neurol. 2011;18:919–24.

    Article  CAS  PubMed  Google Scholar 

  207. Clark DA, Chaouat G. Loss of surface CD200 on stored allogeneic leukocytes may impair anti-abortive effect in vivo. Am J Reprod Immunol. 2005;53:13–20.

    Article  CAS  PubMed  Google Scholar 

  208. Clark DA, Wong K, Banwatt D, Chen Z, Liu J, Lee L, et al. CD200-dependent and nonCD200-dependent pathways of NK cell suppression by human IVIG. J Assist Reprod Genet. 2008;25:67–72.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Lebre MC, van der Aar AM, van Baarsen L, van Capel TM, Schuitemaker JH, Kapsenberg ML, et al. Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9. J Invest Dermatol. 2007;127:331–41.

    Article  CAS  PubMed  Google Scholar 

  210. Ghaly NR, Kotb NA, Nagy HM, Rageh el SM. Toll-like receptor 9 in systemic lupus erythematosus, impact on glucocorticoid treatment. J Dermatol Treat. 2013;24:411–7.

    Article  CAS  Google Scholar 

  211. Kessel A, Peri R, Haj T, Snir A, Slobodin G, Sabo E, et al. IVIg attenuates TLR-9 activation in B cells from SLE patients. J Clin Immunol. 2011;31:30–8.

    Article  CAS  PubMed  Google Scholar 

  212. Futata E, Azor M, Dos Santos J, Maruta C, Sotto M, Guedes F, et al. Impaired IFN-alpha secretion by plasmacytoid dendritic cells induced by TLR9 activation in chronic idiopathic urticaria. Br J Dermatol. 2011;164:1271–9.

    Article  CAS  PubMed  Google Scholar 

  213. Morizane S, Yamasaki K, Muhleisen B, Kotol PF, Murakami M, Aoyama Y, et al. Cathelicidin antimicrobial peptide LL-37 in psoriasis enables keratinocyte reactivity against TLR9 ligands. J Invest Dermatol. 2012;132:135–43.

    Article  CAS  PubMed  Google Scholar 

  214. Wiedeman AE, Santer DM, Yan W, Miescher S, Kasermann F, Elkon KB. Contrasting mechanisms of interferon-alpha inhibition by intravenous immunoglobulin after induction by immune complexes versus Toll-like receptor agonists. Arthritis Rheum. 2013;65:2713–23.

    CAS  PubMed  Google Scholar 

  215. Curtis JA, Christensen LC, Paine AR, Collins Brummer G, Summers EM, Cochran AL, et al. Stevens-Johnson syndrome and toxic epidermal necrolysis treatments: An Internet survey. J Am Acad Dermatol. 2016;74:379–80.

    Article  PubMed  Google Scholar 

  216. Huang YC, Li YC, Chen TJ. The efficacy of intravenous immunoglobulin for the treatment of toxic epidermal necrolysis: a systematic review and meta-analysis. Br J Dermatol. 2012;167:424–32.

    Article  CAS  PubMed  Google Scholar 

  217. Barron SJ, Del Vecchio MT, Aronoff SC. Intravenous immunoglobulin in the treatment of Stevens-Johnson syndrome and toxic epidermal necrolysis: a meta-analysis with meta-regression of observational studies. Int J Dermatol. 2015;54:108–15.

    Article  PubMed  Google Scholar 

  218. Kirchhof MG, Miliszewski MA, Sikora S, Papp A, Dutz JP. Retrospective review of Stevens-Johnson syndrome/toxic epidermal necrolysis treatment comparing intravenous immunoglobulin with cyclosporine. J Am Acad Dermatol. 2014;71:941–7.

    Article  CAS  PubMed  Google Scholar 

  219. Romanelli P, Schlam E, Green JB, Trent JT, Ricotti C, Elgart GW, et al. Immunohistochemical evaluation of toxic epidermal necrolysis treated with human intravenous immunoglobulin. G Ital Dermatol Venereol. 2008;143:229–33.

    CAS  PubMed  Google Scholar 

  220. Paquet P, Kaveri S, Jacob E, Pirson J, Quatresooz P, Pierard GE. Skin immunoglobulin deposition following intravenous immunoglobulin therapy in toxic epidermal necrolysis. Exp Dermatol. 2006;15:381–6.

    Article  CAS  PubMed  Google Scholar 

  221. Lolis M, Toosi S, Czernik A, Bystryn JC. Effect of intravenous immunoglobulin with or without cytotoxic drugs on pemphigus intercellular antibodies. J Am Acad Dermatol. 2011;64:484–9.

    Article  CAS  PubMed  Google Scholar 

  222. Aoyama Y, Moriya C, Kamiya K, Nagai M, Rubenstein D, Iwatsuki K, et al. Catabolism of pemphigus foliaceus autoantibodies by high-dose IVIg therapy. Eur J Dermatol. 2011;21:58–61.

    CAS  PubMed  Google Scholar 

  223. Green MG, Bystryn JC. Effect of intravenous immunoglobulin therapy on serum levels of IgG1 and IgG4 antidesmoglein 1 and antidesmoglein 3 antibodies in pemphigus vulgaris. Arch Dermatol. 2008;144:1621–4.

    Article  CAS  PubMed  Google Scholar 

  224. Czernik A, Beutner EH, Bystryn JC. Intravenous immunoglobulin selectively decreases circulating autoantibodies in pemphigus. J Am Acad Dermatol. 2008;58:796–801.

    Article  PubMed  Google Scholar 

  225. Bystryn JC, Jiao D. IVIg selectively and rapidly decreases circulating pathogenic autoantibodies in pemphigus vulgaris. Autoimmunity. 2006;39(7):601.

    Article  CAS  PubMed  Google Scholar 

  226. Sami N, Bhol KC, Ahmed RA. Influence of intravenous immunoglobulin therapy on autoantibody titers to desmoglein 3 and desmoglein 1 in pemphigus vulgaris. Eur J Dermatol. 2003;13:377–81.

    CAS  PubMed  Google Scholar 

  227. Sami N, Bhol KC, Ahmed AR. Influence of IVIg therapy on autoantibody titers to desmoglein 1 in patients with pemphigus foliaceus. Clin Immunol. 2002;105:192–8.

    Article  CAS  PubMed  Google Scholar 

  228. Aoyama Y, Nagasawa C, Nagai M, Kitajima Y. Severe pemphigus vulgaris: successful combination therapy of plasmapheresis followed by intravenous high-dose immunoglobulin to prevent rebound increase in pathogenic IgG. Eur J Dermatol. 2008;18:557–60.

    PubMed  Google Scholar 

  229. Amagai M, Ikeda S, Shimizu H, Iizuka H, Hanada K, Aiba S, et al. A randomized double-blind trial of intravenous immunoglobulin for pemphigus. J Am Acad Dermatol. 2009;60:595–603.

    Article  PubMed  Google Scholar 

  230. Ahmed AR. Intravenous immunoglobulin therapy in the treatment of patients with pemphigus vulgaris unresponsive to conventional immunosuppressive treatment. J Am Acad Dermatol. 2001;45:679–90.

    Article  CAS  PubMed  Google Scholar 

  231. Ahmed AR, Gurcan HM. Use of intravenous immunoglobulin therapy during pregnancy in patients with pemphigus vulgaris. J Eur Acad Dermatol Venereol. 2011;25(9):1073.

    Article  CAS  PubMed  Google Scholar 

  232. Asarch A, Razzaque Ahmed A. Treatment of juvenile pemphigus vulgaris with intravenous immunoglobulin therapy. Pediatr Dermatol. 2009;26:197–202.

    Article  PubMed  Google Scholar 

  233. Mimouni D, Blank M, Payne AS, Anhalt GJ, Avivi C, Barshack I, et al. Efficacy of intravenous immunoglobulin (IVIG) affinity-purified anti-desmoglein anti-idiotypic antibodies in the treatment of an experimental model of pemphigus vulgaris. Clin Exp Immunol. 2010;162:543–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Keskin DB, Stern JN, Fridkis-Hareli M, Razzaque Ahmed A. Cytokine profiles in pemphigus vulgaris patients treated with intravenous immunoglobulins as compared to conventional immunosuppressive therapy. Cytokine. 2008;41:315–21.

    Article  CAS  PubMed  Google Scholar 

  235. Ahmed AR, Nguyen T, Kaveri S, Spigelman ZS. First line treatment of pemphigus vulgaris with a novel protocol in patients with contraindications to systemic corticosteroids and immunosuppressive agents: Preliminary retrospective study with a seven year follow-up. Int Immunopharmacol. 2016;34:25–31.

    Article  CAS  PubMed  Google Scholar 

  236. Feldman RJ, Christen WG, Ahmed AR. Comparison of immunological parameters in patients with pemphigus vulgaris following rituximab and IVIG therapy. Br J Dermatol. 2012;166:511–7.

    Article  CAS  PubMed  Google Scholar 

  237. Ahmed AR, Kaveri S, Spigelman Z. Long-term remissions in recalcitrant pemphigus vulgaris. N Engl J Med. 2015;373:2693–4.

    Article  PubMed  Google Scholar 

  238. Wang HH, Liu CW, Li YC, Huang YC. Efficacy of rituximab for pemphigus: a systematic review and meta-analysis of different regimens. Acta Derm Venereol. 2015;95:928–32.

    Article  CAS  PubMed  Google Scholar 

  239. Amber KT, Hertl M. An assessment of treatment history and its association with clinical outcomes and relapse in 155 pemphigus patients with response to a single cycle of rituximab. J Eur Acad Dermatol Venereol. 2015;29:777–82.

    Article  CAS  PubMed  Google Scholar 

  240. Shimanovich I, Nitschke M, Rose C, Grabbe J, Zillikens D. Treatment of severe pemphigus with protein A immunoadsorption, rituximab and intravenous immunoglobulins. Br J Dermatol. 2008;158:382–8.

    Article  CAS  PubMed  Google Scholar 

  241. Foster CS, Chang PY, Ahmed AR. Combination of rituximab and intravenous immunoglobulin for recalcitrant ocular cicatricial pemphigoid: a preliminary report. Ophthalmology. 2010;117:861–9.

    Article  PubMed  Google Scholar 

  242. Sami N, Bhol KC, Ahmed AR. Treatment of oral pemphigoid with intravenous immunoglobulin as monotherapy. Long-term follow-up: influence of treatment on antibody titres to human alpha6 integrin. Clin Exp Immunol. 2002;129:533–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Ahmed AR, Colon JE. Comparison between intravenous immunoglobulin and conventional immunosuppressive therapy regimens in patients with severe oral pemphigoid: effects on disease progression in patients nonresponsive to dapsone therapy. Arch Dermatol. 2001;137:1181–9.

    Article  CAS  PubMed  Google Scholar 

  244. Letko E, Bhol K, Foster SC, Ahmed RA. Influence of intravenous immunoglobulin therapy on serum levels of anti-beta 4 antibodies in ocular cicatricial pemphigoid. A correlation with disease activity. A preliminary study. Curr Eye Res. 2000;21:646–54.

    Article  CAS  PubMed  Google Scholar 

  245. Sami N, Bhol KC, Razzaque Ahmed A. Intravenous immunoglobulin therapy in patients with multiple mucosal involvement in mucous membrane pemphigoid. Clin Immunol. 2002;102:59–67.

    Article  CAS  PubMed  Google Scholar 

  246. Amagai M, Ikeda S, Hashimoto T, Mizuashi M, Fujisawa A, Ihn H, et al. A randomized double-blind trial of intravenous immunoglobulin for bullous pemphigoid. J Dermatol Sci. 2017;85:77–84.

    Article  CAS  PubMed  Google Scholar 

  247. Ahmed AR. Intravenous immunoglobulin therapy for patients with bullous pemphigoid unresponsive to conventional immunosuppressive treatment. J Am Acad Dermatol. 2001;45:825–35.

    Article  CAS  PubMed  Google Scholar 

  248. Gaitanis G, Alexis I, Pelidou SH, Gazi IF, Kyritsis AP, Elisaf MS, et al. High-dose intravenous immunoglobulin in the treatment of adult patients with bullous pemphigoid. Eur J Dermatol. 2012;22:363–9.

    CAS  PubMed  Google Scholar 

  249. Engineer L, Ahmed AR. Role of intravenous immunoglobulin in the treatment of bullous pemphigoid: analysis of current data. J Am Acad Dermatol. 2001;44:83–8.

    Article  CAS  PubMed  Google Scholar 

  250. Czernik A, Bystryn JC. Improvement of intravenous immunoglobulin therapy for bullous pemphigoid by adding immunosuppressive agents: marked improvement in depletion of circulating autoantibodies. Arch Dermatol. 2008;144:658–61.

    PubMed  Google Scholar 

  251. Nguyen T, Alraqum E, Razzaque Ahmed A. Positive clinical outcome with IVIg as monotherapy in recurrent pemphigoid gestationis. Int Immunopharmacol. 2015;26:1–3.

    Article  PubMed  CAS  Google Scholar 

  252. Intong LR, Murrell DF. Pemphigoid gestationis: current management. Dermatol Clin. 2011;29:621–8.

    Article  CAS  PubMed  Google Scholar 

  253. Ahmed AR, Gurcan HM. Treatment of epidermolysis bullosa acquisita with intravenous immunoglobulin in patients non-responsive to conventional therapy: clinical outcome and post-treatment long-term follow-up. J Eur Acad Dermatol Venereol. 2012;26:1074–83.

    Article  CAS  PubMed  Google Scholar 

  254. Oktem A, Akay BN, Boyvat A, Kundakci N, Erdem C, Bostanci S, et al. Long-term results of rituximab-intravenous immunoglobulin combination therapy in patients with epidermolysis bullosa acquisita resistant to conventional therapy. J Dermatolog Treat. 2016:1–5.

    Google Scholar 

  255. Wang DX, Shu XM, Tian XL, Chen F, Zu N, Ma L, et al. Intravenous immunoglobulin therapy in adult patients with polymyositis/dermatomyositis: a systematic literature review. Clin Rheumatol. 2012;31:801–6.

    Article  PubMed  Google Scholar 

  256. Kampylafka EI, Kosmidis ML, Panagiotakos DB, Dalakas M, Moutsopoulos HM, Tzioufas AG. The effect of intravenous immunoglobulin (IVIG) treatment on patients with dermatomyositis: a 4-year follow-up study. Clin Exp Rheumatol. 2012;30:397–401.

    CAS  PubMed  Google Scholar 

  257. Amemiya K, Semino-Mora C, Granger RP, Dalakas MC. Downregulation of TGF-beta1 mRNA and protein in the muscles of patients with inflammatory myopathies after treatment with high-dose intravenous immunoglobulin. Clin Immunol. 2000;94:99–104.

    Article  CAS  PubMed  Google Scholar 

  258. Callander J, Robson Y, Ingram J, Piguet V. Treatment of clinically amyopathic dermatomyositis in adults: a systematic review. Br J Dermatol. 2016;

    Google Scholar 

  259. Femia AN, Eastham AB, Lam C, Merola JF, Qureshi AA, Vleugels RA. Intravenous immunoglobulin for refractory cutaneous dermatomyositis: a retrospective analysis from an academic medical center. J Am Acad Dermatol. 2013;69:654–7.

    Article  PubMed  Google Scholar 

  260. Saito E, Koike T, Hashimoto H, Miyasaka N, Ikeda Y, Hara M, et al. Efficacy of high-dose intravenous immunoglobulin therapy in Japanese patients with steroid-resistant polymyositis and dermatomyositis. Mod Rheumatol. 2008;18:34–44.

    Article  CAS  PubMed  Google Scholar 

  261. Bounfour T, Bouaziz JD, Bezier M, Cordoliani F, Saussine A, Petit A, et al. Clinical efficacy of intravenous immunoglobulins for the treatment of dermatomyositis skin lesions without muscle disease. J Eur Acad Dermatol Venereol. 2014;28:1150–7.

    Article  CAS  PubMed  Google Scholar 

  262. Gottfried I, Seeber A, Anegg B, Rieger A, Stingl G, Volc-Platzer B. High dose intravenous immunoglobulin (IVIG) in dermatomyositis: clinical responses and effect on sIL-2R levels. Eur J Dermatol. 2000;10:29–35.

    CAS  PubMed  Google Scholar 

  263. Lam CG, Manlhiot C, Pullenayegum EM, Feldman BM. Efficacy of intravenous Ig therapy in juvenile dermatomyositis. Ann Rheum Dis. 2011;70:2089–94.

    Article  CAS  PubMed  Google Scholar 

  264. Al-Mayouf SM, Laxer RM, Schneider R, Silverman ED, Feldman BM. Intravenous immunoglobulin therapy for juvenile dermatomyositis: efficacy and safety. J Rheumatol. 2000;27:2498–503.

    CAS  PubMed  Google Scholar 

  265. Manlhiot C, Tyrrell PN, Liang L, Atkinson AR, Lau W, Feldman BM. Safety of intravenous immunoglobulin in the treatment of juvenile dermatomyositis: adverse reactions are associated with immunoglobulin A content. Pediatrics. 2008;121:e626–30.

    Article  PubMed  Google Scholar 

  266. Galimberti F, Li Y, Fernandez AP. Intravenous immunoglobulin for treatment of dermatomyositis-associated dystrophic calcinosis. J Am Acad Dermatol. 2015;73:174–6.

    Article  PubMed  Google Scholar 

  267. Touimy M, Janani S, Rachidi W, Etaouil N, Mkinsi O. Calcinosis universalis complicating juvenile dermatomyositis: improvement after intravenous immunoglobulin therapy. Joint Bone Spine. 2013;80:108–9.

    Article  PubMed  Google Scholar 

  268. Shahani L. Refractory calcinosis in a patient with dermatomyositis: response to intravenous immune globulin. BMJ Case Rep 2012;2012.

    Google Scholar 

  269. Penate Y, Guillermo N, Melwani P, Martel R, Hernandez-Machin B, Borrego L. Calcinosis cutis associated with amyopathic dermatomyositis: response to intravenous immunoglobulin. J Am Acad Dermatol. 2009;60:1076–7.

    Article  PubMed  Google Scholar 

  270. Kalajian AH, Perryman JH, Callen JP. Intravenous immunoglobulin therapy for dystrophic calcinosis cutis: unreliable in our hands. Arch Dermatol. 2009;145:334. author reply 5

    PubMed  Google Scholar 

  271. Amano H, Nagai Y, Katada K, Hashimoto C, Ishikawa O. Successful treatment of cutaneous lesions in juvenile dermatomyositis with high-dose intravenous immunoglobulin. Br J Dermatol. 2007;156:1390–2.

    Article  CAS  PubMed  Google Scholar 

  272. Sunderkotter C, Nast A, Worm M, Dengler R, Dorner T, Ganter H, et al. Guidelines on dermatomyositis--excerpt from the interdisciplinary S2k guidelines on myositis syndromes by the German Society of Neurology. J Dtsch Dermatol Ges. 2016;14:321–38.

    Article  PubMed  Google Scholar 

  273. Johnson NE, Arnold WD, Hebert D, Gwathmey K, Dimachkie MM, Barohn RJ, et al. Disease course and therapeutic approach in dermatomyositis: a four-center retrospective study of 100 patients. Neuromuscul Disord. 2015;25:625–31.

    Article  PubMed  PubMed Central  Google Scholar 

  274. Marie I, Menard JF, Hatron PY, Hachulla E, Mouthon L, Tiev K, et al. Intravenous immunoglobulins for steroid-refractory esophageal involvement related to polymyositis and dermatomyositis: a series of 73 patients. Arthritis Care Res (Hoboken). 2010;62:1748–55.

    Article  CAS  Google Scholar 

  275. Roekevisch E, Spuls PI, Kuester D, Limpens J, Schmitt J. Efficacy and safety of systemic treatments for moderate-to-severe atopic dermatitis: a systematic review. J Allergy Clin Immunol. 2014;133:429–38.

    Article  CAS  PubMed  Google Scholar 

  276. Turner PJ, Kakakios A, Wong LC, Wong M, Campbell DE. Intravenous immunoglobulin to treat severe atopic dermatitis in children: a case series. Pediatr Dermatol. 2012;29:177–81.

    Article  PubMed  Google Scholar 

  277. Jolles S, Sewell C, Webster D, Ryan A, Heelan B, Waite A, et al. Adjunctive high-dose intravenous immunoglobulin treatment for resistant atopic dermatitis: efficacy and effects on intracellular cytokine levels and CD4 counts. Acta Derm Venereol. 2003;83:433–7.

    Article  CAS  PubMed  Google Scholar 

  278. Jee SJ, Kim JH, Baek HS, Lee HB, Oh JW. Long-term efficacy of intravenous immunoglobulin therapy for moderate to severe childhood atopic dermatitis. Allergy Asthma Immunol Res. 2011;3:89–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Bemanian MH, Movahedi M, Farhoudi A, Gharagozlou M, Seraj MH, Pourpak Z, et al. High doses intravenous immunoglobulin versus oral cyclosporine in the treatment of severe atopic dermatitis. Iran J Allergy Asthma Immunol. 2005;4:139–43.

    PubMed  Google Scholar 

  280. Paul C, Lahfa M, Bachelez H, Chevret S, Dubertret L. A randomized controlled evaluator-blinded trial of intravenous immunoglobulin in adults with severe atopic dermatitis. Br J Dermatol. 2002;147:518–22.

    Article  CAS  PubMed  Google Scholar 

  281. Sakthiswary R, D’Cruz D. Intravenous immunoglobulin in the therapeutic armamentarium of systemic lupus erythematosus: a systematic review and meta-analysis. Medicine (Baltimore). 2014;93:e86.

    Article  CAS  Google Scholar 

  282. Lampropoulos CE, Hughes GR, D’Cruz DC. Intravenous immunoglobulin in the treatment of resistant subacute cutaneous lupus erythematosus: a possible alternative. Clin Rheumatol. 2007;26:981–3.

    Article  PubMed  Google Scholar 

  283. Ky C, Swasdibutra B, Khademi S, Desai S, Laquer V, Grando SA. Efficacy of intravenous immunoglobulin monotherapy in patients with cutaneous lupus erythematosus: results of proof-of-concept study. Dermatol Rep. 2015;7:5804.

    Article  Google Scholar 

  284. Goodfield M, Davison K, Bowden K. Intravenous immunoglobulin (IVIg) for therapy-resistant cutaneous lupus erythematosus (LE). J Dermatolog Treat. 2004;15:46–50.

    Article  CAS  PubMed  Google Scholar 

  285. Espirito Santo J, Gomes MF, Gomes MJ, Peixoto L, CP S, Acabado A, et al. Intravenous immunoglobulin in lupus panniculitis. Clin Rev Allergy Immunol. 2010;38:307–18.

    Article  PubMed  Google Scholar 

  286. Fagiolo U, Kricek F, Ruf C, Peserico A, Amadori A, Cancian M. Effects of complement inactivation and IgG depletion on skin reactivity to autologous serum in chronic idiopathic urticaria. J Allergy Clin Immunol. 2000;106:567–72.

    Article  CAS  PubMed  Google Scholar 

  287. O’Donnell BF, Barr RM, Black AK, Francis DM, Kermani F, Niimi N, et al. Intravenous immunoglobulin in autoimmune chronic urticaria. Br J Dermatol. 1998;138:101–6.

    Article  PubMed  Google Scholar 

  288. Mitzel-Kaoukhov H, Staubach P, Muller-Brenne T. Effect of high-dose intravenous immunoglobulin treatment in therapy-resistant chronic spontaneous urticaria. Ann Allergy Asthma Immunol. 2010;104:253–8.

    Article  CAS  PubMed  Google Scholar 

  289. Pereira C, Tavares B, Carrapatoso I, Loureiro G, Faria E, Machado D, et al. Low-dose intravenous gammaglobulin in the treatment of severe autoimmune urticaria. Eur Ann Allergy Clin Immunol. 2007;39:237–42.

    CAS  PubMed  Google Scholar 

  290. Aubin F, Porcher R, Jeanmougin M, Leonard F, Bedane C, Moreau A, et al. Severe and refractory solar urticaria treated with intravenous immunoglobulins: a phase II multicenter study. J Am Acad Dermatol. 2014;71:948–53. e1

    Article  CAS  PubMed  Google Scholar 

  291. Adamski H, Bedane C, Bonnevalle A, Thomas P, Peyron JL, Rouchouse B, et al. Solar urticaria treated with intravenous immunoglobulins. J Am Acad Dermatol. 2011;65:336–40.

    Article  CAS  PubMed  Google Scholar 

  292. Dawn G, Urcelay M, Ah-Weng A, O’Neill SM, Douglas WS. Effect of high-dose intravenous immunoglobulin in delayed pressure urticaria. Br J Dermatol. 2003;149:836–40.

    Article  CAS  PubMed  Google Scholar 

  293. Cantarini L, Rigante D, Vitale A, Napodano S, Sakkas LI, Bogdanos DP, et al. Intravenous immunoglobulins (IVIG) in systemic sclerosis: a challenging yet promising future. Immunol Res. 2015;61:326–37.

    Article  CAS  PubMed  Google Scholar 

  294. Takehara K, Ihn H, Sato SA. randomized, double-blind, placebo-controlled trial: intravenous immunoglobulin treatment in patients with diffuse cutaneous systemic sclerosis. Clin Exp Rheumatol. 2013;31:151–6.

    PubMed  Google Scholar 

  295. Levy Y, Amital H, Langevitz P, Nacci F, Righi A, Conforti L, et al. Intravenous immunoglobulin modulates cutaneous involvement and reduces skin fibrosis in systemic sclerosis: an open-label study. Arthritis Rheum. 2004;50:1005–7.

    Article  PubMed  CAS  Google Scholar 

  296. Poelman CL, Hummers LK, Wigley FM, Anderson C, Boin F, Shah AA. Intravenous immunoglobulin may be an effective therapy for refractory, active diffuse cutaneous systemic sclerosis. J Rheumatol. 2015;42:236–42.

    Article  CAS  PubMed  Google Scholar 

  297. Kudo H, Jinnin M, Yamane K, Makino T, Kajihara I, Makino K, et al. Intravenous immunoglobulin treatment recovers the down-regulated levels of Th1 cytokines in the sera and skin of scleroderma patients. J Dermatol Sci. 2013;69:77–80.

    Article  CAS  PubMed  Google Scholar 

  298. Raja J, Nihtyanova SI, Murray CD, Denton CP, Ong VH. Sustained benefit from intravenous immunoglobulin therapy for gastrointestinal involvement in systemic sclerosis. Rheumatology (Oxford). 2016;55:115–9.

    Article  Google Scholar 

  299. Kumar S, Singh J, Kedika R, Mendoza F, Jimenez SA, Blomain ES, et al. Role of muscarinic-3 receptor antibody in systemic sclerosis: correlation with disease duration and effects of IVIG. Am J Physiol Gastrointest Liver Physiol. 2016;310:G1052–60.

    Article  PubMed  PubMed Central  Google Scholar 

  300. Oates-Whitehead RM, Baumer JH, Haines L, Love S, Maconochie IK, Gupta A, et al. Intravenous immunoglobulin for the treatment of Kawasaki disease in children. Cochrane Database Syst Rev. 2003:CD004000.

    Google Scholar 

  301. Rigante D, Andreozzi L, Fastiggi M, Bracci B, Natale MF, Esposito S. Critical overview of the risk scoring systems to predict non-responsiveness to intravenous immunoglobulin in Kawasaki syndrome. Int J Mol Sci 2016;17.

    Google Scholar 

  302. Baek JY, Song MS. Meta-analysis of factors predicting resistance to intravenous immunoglobulin treatment in patients with Kawasaki disease. Korean J Pediatr. 2016;59:80–90.

    Article  PubMed  PubMed Central  Google Scholar 

  303. Kawamura Y, Takeshita S, Kanai T, Yoshida Y, Nonoyama S. The combined usefulness of the neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios in predicting intravenous immunoglobulin resistance with Kawasaki disease. J Pediatr 2016.

    Google Scholar 

  304. Davies S, Sutton N, Blackstock S, Gormley S, Hoggart CJ, Levin M, et al. Predicting IVIG resistance in UK Kawasaki disease. Arch Dis Child. 2015;100:366–8.

    Article  PubMed  Google Scholar 

  305. Burns JC, Franco A. The immunomodulatory effects of intravenous immunoglobulin therapy in Kawasaki disease. Expert Rev Clin Immunol. 2015;11:819–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Xue LJ, Wu R, Du GL, Xu Y, Yuan KY, Feng ZC, et al. Effect and safety of TNF Inhibitors in immunoglobulin-resistant Kawasaki disease: a meta-analysis. Clin Rev Allergy Immunol 2016.

    Google Scholar 

  307. Kim EJ, Yoon SY, Park HS, Yoon HS, Cho S. Pulsed intravenous immunoglobulin therapy in refractory ulcerated livedoid vasculopathy: seven cases and a literature review. Dermatol Ther. 2015;28:287–90.

    Article  PubMed  Google Scholar 

  308. Monshi B, Posch C, Vujic I, Sesti A, Sobotka S, Rappersberger K. Efficacy of intravenous immunoglobulins in livedoid vasculopathy: long-term follow-up of 11 patients. J Am Acad Dermatol. 2014;71:738–44.

    Article  CAS  PubMed  Google Scholar 

  309. Bounfour T, Bouaziz JD, Bezier M, Petit A, Viguier M, Rybojad M, et al. Intravenous immunoglobulins in difficult-to-treat ulcerated livedoid vasculopathy: five cases and a literature review. Int J Dermatol. 2013;52(9):1135.

    Article  PubMed  Google Scholar 

  310. Kreuter A, Gambichler T, Breuckmann F, Bechara FG, Rotterdam S, Stucker M, et al. Pulsed intravenous immunoglobulin therapy in livedoid vasculitis: an open trial evaluating 9 consecutive patients. J Am Acad Dermatol. 2004;51:574–9.

    Article  PubMed  Google Scholar 

  311. Martinez V, Cohen P, Pagnoux C, Vinzio S, Mahr A, Mouthon L, et al. Intravenous immunoglobulins for relapses of systemic vasculitides associated with antineutrophil cytoplasmic autoantibodies: results of a multicenter, prospective, open-label study of twenty-two patients. Arthritis Rheum. 2008;58:308–17.

    Article  CAS  PubMed  Google Scholar 

  312. Levy Y, Sherer Y, George J, Langevitz P, Ahmed A, Bar-Dayan Y, et al. Serologic and clinical response to treatment of systemic vasculitis and associated autoimmune disease with intravenous immunoglobulin. Int Arch Allergy Immunol. 1999;119:231–8.

    Article  CAS  PubMed  Google Scholar 

  313. Ito-Ihara T, Ono T, Nogaki F, Suyama K, Tanaka M, Yonemoto S, et al. Clinical efficacy of intravenous immunoglobulin for patients with MPO-ANCA-associated rapidly progressive glomerulonephritis. Nephron Clin Pract. 2006;102:c35–42.

    Article  CAS  PubMed  Google Scholar 

  314. Jayne DR, Chapel H, Adu D, Misbah S, O’Donoghue D, Scott D, et al. Intravenous immunoglobulin for ANCA-associated systemic vasculitis with persistent disease activity. QJM. 2000;93:433–9.

    Article  CAS  PubMed  Google Scholar 

  315. Crickx E, Machelart I, Lazaro E, Kahn JE, Cohen-Aubart F, Martin T, et al. Intravenous Immunoglobulin as an Immunomodulating agent in antineutrophil cytoplasmic antibody-associated vasculitides: a French Nationwide Study of Ninety-Two Patients. Arthritis Rheumatol. 2016;68:702–12.

    Article  CAS  PubMed  Google Scholar 

  316. Fortin PM, Tejani AM, Bassett K, Musini VM. Intravenous immunoglobulin as adjuvant therapy for Wegener’s granulomatosis. Cochrane Database Syst Rev. 2013:Cd007057.

    Google Scholar 

  317. Richter C, Schnabel A, Csernok E, De Groot K, Reinhold-Keller E, Gross WL. Treatment of anti-neutrophil cytoplasmic antibody (ANCA)-associated systemic vasculitis with high-dose intravenous immunoglobulin. Clin Exp Immunol. 1995;101:2–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Koike H, Akiyama K, Saito T, Sobue G. Intravenous immunoglobulin for chronic residual peripheral neuropathy in eosinophilic granulomatosis with polyangiitis (Churg-Strauss syndrome): a multicenter, double-blind trial. J Neurol. 2015;262:752–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Tsurikisawa N, Taniguchi M, Saito H, Himeno H, Ishibashi A, Suzuki S, et al. Treatment of Churg-Strauss syndrome with high-dose intravenous immunoglobulin. Ann Allergy Asthma Immunol. 2004;92:80–7.

    Article  CAS  PubMed  Google Scholar 

  320. Danieli MG, Cappelli M, Malcangi G, Logullo F, Salvi A, Danieli G. Long term effectiveness of intravenous immunoglobulin in Churg-Strauss syndrome. Ann Rheum Dis. 2004;63:1649–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Cantarini L, Stromillo ML, Vitale A, Lopalco G, Emmi G, Silvestri E, et al. Efficacy and safety of intravenous immunoglobulin treatment in refractory Behcet’s disease with different organ involvement: a case series. Isr Med Assoc J. 2016;18:238–42.

    PubMed  Google Scholar 

  322. Seider N, Beiran I, Scharf J, Miller B. Intravenous immunoglobulin therapy for resistant ocular Behcet’s disease. Br J Ophthalmol. 2001;85:1287–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Rewald E, Jaksic JC. Behcet’s syndrome treated with high-dose intravenous IgG and low-dose aspirin. J R Soc Med. 1990;83:652–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  324. Breda L, Franchini S, Marzetti V, Chiarelli F. Intravenous immunoglobulins for cutaneous polyarteritis nodosa resistant to conventional treatment. Scand J Rheumatol. 2016;45:169–70.

    Article  CAS  PubMed  Google Scholar 

  325. Pego PM, Camara IA, Andrade JP, Costa JM. Intravenous immunoglobulin therapy in vasculitic ulcers: a case of polyarteritis nodosa. Auto Immun Highlights. 2013;4:95–9.

    Article  PubMed  PubMed Central  Google Scholar 

  326. Lobo I, Ferreira M, Silva E, Alves R, Selores M. Cutaneous polyarteritis nodosa treated with intravenous immunoglobulins. J Eur Acad Dermatol Venereol. 2008;22:880–2.

    Article  CAS  PubMed  Google Scholar 

  327. Asano Y, Ihn H, Maekawa T, Kadono T, Tamaki K. High-dose intravenous immunoglobulin infusion in polyarteritis nodosa: report on one case and review of the literature. Clin Rheumatol. 2006;25:396–8.

    Article  PubMed  Google Scholar 

  328. Uziel Y, Silverman ED. Intravenous immunoglobulin therapy in a child with cutaneous polyarteritis nodosa. Clin Exp Rheumatol. 1998;16:187–9.

    CAS  PubMed  Google Scholar 

  329. Bansal NK, Houghton KM. Cutaneous polyarteritis nodosa in childhood: a case report and review of the literature. Arthritis. 2010;2010:687547.

    Article  PubMed  PubMed Central  Google Scholar 

  330. Marie I, Miranda S, Girszyn N, Soubrane JC, Vandhuick T, Levesque H. Intravenous immunoglobulins as treatment of severe cutaneous polyarteritis nodosa. Intern Med J. 2012;42:459–62.

    Article  CAS  PubMed  Google Scholar 

  331. Umemura M, Miwa Y, Yanai R, Isojima S, Tokunaga T, Tsukamoto H, et al. A case of Degos disease: demonstration of C5b-9-mediated vascular injury. Mod Rheumatol. 2015;25:480–3.

    Article  PubMed  Google Scholar 

  332. Guo YF, Pan WH, Cheng RH, Yu H, Liao WQ, Yao ZR. Successful treatment of neurological malignant atrophic papulosis in child by corticosteroid combined with intravenous immunoglobulin. CNS Neurosci Ther. 2014;20:88–91.

    Article  CAS  PubMed  Google Scholar 

  333. De Breucker S, Vandergheynst F, Decaux G. Inefficacy of intravenous immunoglobulins and infliximab in Degos’ disease. Acta Clin Belg. 2008;63:99–102.

    Article  PubMed  Google Scholar 

  334. Zhu KJ, Zhou Q, Lin AH, ZM L, Cheng H. The use of intravenous immunoglobulin in cutaneous and recurrent perforating intestinal Degos disease (malignant atrophic papulosis). Br J Dermatol. 2007;157:206–7.

    Article  CAS  PubMed  Google Scholar 

  335. Yamazaki-Nakashimada MA, Duran-McKinster C, Ramirez-Vargas N, Hernandez-Bautista V. Intravenous immunoglobulin therapy for hypocomplementemic urticarial vasculitis associated with systemic lupus erythematosus in a child. Pediatr Dermatol. 2009;26:445–7.

    Article  PubMed  Google Scholar 

  336. Filosto M, Cavallaro T, Pasolini G, Broglio L, Tentorio M, Cotelli M, et al. Idiopathic hypocomplementemic urticarial vasculitis-linked neuropathy. J Neurol Sci. 2009;284:179–81.

    Article  PubMed  Google Scholar 

  337. Shah D, Rowbottom AW, Thomas CL, Cumber P, Chowdhury MM. Hypocomplementaemic urticarial vasculitis associated with non-Hodgkin lymphoma and treatment with intravenous immunoglobulin. Br J Dermatol. 2007;157:392–3.

    Article  CAS  PubMed  Google Scholar 

  338. Perez C, Guarch R, Rodrigo M, Gallego M, Ormazabal O. Successful treatment of leucocytoclastic vasculitis and pancytopenia secondary to systemic lupus erythematosus with intravenous immunoglobulin. Br J Dermatol. 2002;147:180–2.

    Article  CAS  PubMed  Google Scholar 

  339. Wetter DA, Davis MD, Yiannias JA, Gibson LE, Dahl MV, el-Azhary RA, et al. Effectiveness of intravenous immunoglobulin therapy for skin disease other than toxic epidermal necrolysis: a retrospective review of Mayo Clinic experience. Mayo Clin Proc. 2005;80:41–7.

    Article  PubMed  Google Scholar 

  340. Ong CS, Benson EM. Successful treatment of chronic leucocytoclastic vasculitis and persistent ulceration with intravenous immunoglobulin. Br J Dermatol. 2000;143:447–9.

    Article  CAS  PubMed  Google Scholar 

  341. Sais G, Vidaller A, Servitje O, Jucgla A, Peyri J. Leukocytoclastic vasculitis and common variable immunodeficiency: successful treatment with intravenous immune globulin. J Allergy Clin Immunol. 1996;98:232–3.

    Article  CAS  PubMed  Google Scholar 

  342. Staubach-Renz P, von Stebut E, Brauninger W, Maurer M, Steinbrink K. Hypocomplementemic urticarial vasculitis syndrome. Successful therapy with intravenous immunoglobulins. Hautarzt. 2007;58:693–7.

    Article  CAS  PubMed  Google Scholar 

  343. Nydegger UE, Sturzenegger M. Adverse effects of intravenous immunoglobulin therapy. Drug Saf. 1999;21:171–85.

    Article  CAS  PubMed  Google Scholar 

  344. Gurcan HM, Ahmed AR. Frequency of adverse events associated with intravenous immunoglobulin therapy in patients with pemphigus or pemphigoid. Ann Pharmacother. 2007;41(10):1604.

    Article  CAS  PubMed  Google Scholar 

  345. Thornby KA, Henneman A, Brown DA. Evidence-based strategies to reduce intravenous immunoglobulin-induced headaches. Ann Pharmacother. 2015;49:715–26.

    Article  CAS  PubMed  Google Scholar 

  346. Sekul EA, Cupler EJ, Dalakas MC. Aseptic meningitis associated with high-dose intravenous immunoglobulin therapy: frequency and risk factors. Ann Intern Med. 1994;121:259–62.

    Article  CAS  PubMed  Google Scholar 

  347. Jarius S, Eichhorn P, Albert MH, Wagenpfeil S, Wick M, Belohradsky BH, et al. Intravenous immunoglobulins contain naturally occurring antibodies that mimic antineutrophil cytoplasmic antibodies and activate neutrophils in a TNFalpha-dependent and Fc-receptor-independent way. Blood. 2007;109:4376–82.

    Article  CAS  PubMed  Google Scholar 

  348. Stiehm ER. Adverse effects of human immunoglobulin therapy. Transfus Med Rev. 2013;27:171–8.

    Article  PubMed  Google Scholar 

  349. Renal insufficiency and failure associated with immune globulin intravenous therapy--United States, 1985–1998. MMWR Morb Mortal Wkly Rep. 1999;48:518–21.

    Google Scholar 

  350. Ahsan N, Palmer BF, Wheeler D, Greenlee RG Jr, Toto RD. Intravenous immunoglobulin-induced osmotic nephrosis. Arch Intern Med. 1994;154:1985–7.

    Article  CAS  PubMed  Google Scholar 

  351. Cherin P, Marie I, Michallet M, Pelus E, Dantal J, Crave JC, et al. Management of adverse events in the treatment of patients with immunoglobulin therapy: A review of evidence. Autoimmun Rev. 2016;15:71–81.

    Article  CAS  PubMed  Google Scholar 

  352. Mizrahi M. The hypercoagulability of intravenous immunoglobulin. Clin Adv Hematol Oncol. 2011;9:49–50.

    PubMed  Google Scholar 

  353. Gerstenblith MR, Antony AK, Junkins-Hopkins JM, Abuav R. Pompholyx and eczematous reactions associated with intravenous immunoglobulin therapy. J Am Acad Dermatol. 2012;66:312–6.

    Article  CAS  PubMed  Google Scholar 

  354. van der Molen RG, Hamann D, Jacobs JF, van der Meer A, de Jong J, Kramer C, et al. Anti-SSA antibodies are present in immunoglobulin preparations. Transfusion. 2015;55:832–7.

    Article  PubMed  CAS  Google Scholar 

  355. Daoud YJ, Amin KG. Comparison of cost of immune globulin intravenous therapy to conventional immunosuppressive therapy in treating patients with autoimmune mucocutaneous blistering diseases. Int Immunopharmacol. 2006;6:600–6.

    Article  CAS  PubMed  Google Scholar 

  356. Daoud Y, Amin KG, Mohan K, Ahmed AR. Cost of intravenous immunoglobulin therapy versus conventional immunosuppressive therapy in patients with mucous membrane pemphigoid: a preliminary study. Ann Pharmacother. 2005;39:2003–8.

    Article  PubMed  Google Scholar 

  357. Heelan K, Hassan S, Bannon G, Knowles S, Walsh S, Shear NH, et al. Cost and resource use of pemphigus and pemphigoid disorders pre- and post-rituximab. J Cutan Med Surg. 2015;19:274–82.

    Article  PubMed  CAS  Google Scholar 

  358. Bamrungsawad N, Chaiyakunapruk N, Upakdee N, Pratoomsoot C, Sruamsiri R, Dilokthornsakul P. Cost-utility analysis of intravenous immunoglobulin for the treatment of steroid-refractory dermatomyositis in Thailand. Pharmacoeconomics. 2015;33:521–31.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mark Mazaitis for assistance with Fig. 39.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei A. Grando MD, PhD, DSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Amber, K.T., Shiu, J., Ferris, K., Grando, S.A. (2018). Role of Intravenous Immunoglobulin in Dermatologic Disorders. In: Yamauchi, P. (eds) Biologic and Systemic Agents in Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-66884-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66884-0_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66883-3

  • Online ISBN: 978-3-319-66884-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics