Skip to main content
Book cover

The Hand pp 75–95Cite as

Current Achievements and Future Directions of Hand Prostheses Controlled via Peripheral Nervous System

  • Chapter
  • First Online:

Part of the book series: Studies in Applied Philosophy, Epistemology and Rational Ethics ((SAPERE,volume 38))

Abstract

The human hand is a powerful tool to feel and act on the environment and a very sophisticated means for physical and social interaction. This is why hand loss can be perceived as a devastating damage that changes people lifestyle. It causes a severe impairment for the amputees and can significantly alter their quality of life, since it affects personal and working fields by reducing the level of autonomy, the capability of performing activities of daily living (ADLs), and the capability to gesture and interact with other people. The upper-limb amputation involves almost 4000 people per year in Italy and about the 20% of amputations in USA. The relevance of the upper-limb loss in the international scenario motivates the flourishing research in the field of upper-limb prosthetics. This chapter intends to provide an overview on hand prostheses driven by non-invasive and invasive interfaces with the peripheral nervous system (PNS), taking into account technical aspects related to hand control, peripheral interfaces, and clinical features about the restoration of sensory feedback. The international scenario of off-the-shelf and on-the-shelf prosthetic hands is explored, and pros and cons of technologies are analyzed. This chapter is especially focused on the recent studies on the restoration of tactile perception in amputees through neural interfaces and first evidence on bidirectional hand control. Current achievements on this thorny topic are in-depth explained in this chapter and future directions are finally roughed out.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.touchbionics.com/.

  2. 2.

    http://www.living-with-michelangelo.com/home/<.

  3. 3.

    http://www.bebionic.com.

  4. 4.

    COAPT Complete control, 2014. Available: http://www.coaptengineering.com/.

References

  • Antfolk, C., D’Alonzo, M., Rosen, B., Lundborg, G., Sebelius, F., & Cipriani, C. (2013). Sensory feedback in upper limb prosthetics. Expert Review of Medical Devices, 10, 45–54. doi:10.1586/erd.12.68.

    Article  Google Scholar 

  • Badia, J., Boretius, T., Andreu, D., Azevedo-Coste, C., Stieglitz, T., Navarro, X. (2011). Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles. Journal of Neural Engineering, 8, 13 pp.

    Google Scholar 

  • Belter, J. T., Segil, J. L., Dollar, A. M., & Weir, R. F. (2013). Mechanical design and performance specifications of anthropomorphic prosthetic hands: A review. Journal of Rehabilitation Research and Development, 50, 599–618.

    Article  Google Scholar 

  • Benvenuto, A., Raspopovic, S., Hoffmann, K. P., Carpaneto, G. C., Di Pino, G., Guglielmelli, E. (2010). Intrafascicular thin-film multichannel electrodes for sensory feedback: Evidences on a human amputee. In 32nd Annual International Conference of the IEEE EMBS, pp. 1800–1803.

    Google Scholar 

  • Biddiss, E., Beaton, D., & Chau, T. (2007). Consumer design priorities for upper limb prosthetics. Disability and Rehabilitation: Assistive Technology, 2, 346–357. doi:10.1080/17483100701714733.

    Article  Google Scholar 

  • Biddiss, E. A., & Chau, T. T. (2007). Upper limb prosthesis use and abandonment: A survey of the last 25 years. Prosthetics and Orthotics International, 31, 236–257. doi:10.1080/03093640600994581.

    Article  Google Scholar 

  • Boretius, T., Badia, J., Pascual-Font, A., Schuettler, M., Navarro, X., Yoshida, K., et al. (2010). A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosensors & Bioelectronics, 26, 62–69.

    Article  Google Scholar 

  • Bossi, S., Menciassi, A., Koch, K. P., Hoffmann, K. P., Yoshida, K., Dario, P., et al. (2007). Shape memory alloy microactuation oft f-LIFEs: Preliminary results. IEEE Transactions on Biomedical Engineering, 54(6), 1115–1120.

    Article  Google Scholar 

  • Bouffard, J., Vincent, C., Boulianne, E., Lajoie, S., & Mercier, C. (2012). Interactions between the phantom limb sensations, prosthesis use, and rehabilitation as seen by amputees and health professionals. Journal of Prosthetics and Orthotics., 24, 25–33. doi:10.1097/JPO.0b013e318240d171.

    Article  Google Scholar 

  • Childress, D. S. (1980). Closed-loop control in prosthetic systems: Historical perspective. Annals on Biomedical Engineering, 8, 293–303.

    Article  Google Scholar 

  • Ciancio, A. L., Cordella, F., Barone, R., Romeo, R. A., Dellacasa Bellingegni, A., Sacchetti, R. et al. (2016). Control of prosthetic hands via the peripheral nervous system. Frontiers in Neuroscience, 10, 116.

    Google Scholar 

  • Clement, R. G. E., Bugler, K. E., & Oliver, C. W. (2011). Bionic prosthetic hands: A review of present technology and future aspirations. Surgeon, 9, 336–340.

    Article  Google Scholar 

  • Clippinger, F. W., Avery, R., & Titus, B. R. (1974). A sensory feedback system for an upper-limb amputation prosthesis. Bulletin of Prosthetics Research, 247–258.

    Google Scholar 

  • Cloutier, A., Yang, J. (2013). Design, control, and sensory feedback of externally powered hand prostheses: A literature review. Critical Reviews in Biomedical Engineering, 41, 161–81. doi:10.1615/CritRevBiomedEng.2013007887.

  • Cloutier, A., & Yang, J. (2013). Design, control, and sensory feedback of externally powered hand prostheses: A literature review. Critical Reviews in Biomedical Engineering, 41, 161–81. doi:10.1615/CritRevBiomedEng.2013007887.

  • Cogan, S. F. (2008). Neural stimulation and recording electrodes. Annual Review of Biomedical Engineering, 275–309.

    Google Scholar 

  • Cordella, F., Ciancio, A. L., Sacchetti, R., Davalli, A., Cutti, A. G., Guglielmelli, E., et al. (2016). Literature review on needs of upper limb prosthesis users. Frontiers in Neuroscience. doi:10.3389/fnins.2016.00209.

    Google Scholar 

  • Dhillon, G. S., & Horch, K. W. (2005). Direct neural sensory feedback and control of a prosthetic arm. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13, 468–472. doi:10.1109/TNSRE.2005.856072.

    Article  Google Scholar 

  • Dohnalek, P., Gajdos, P., & Peterek, T. (2013). Human activity recognition on raw sensors data via sparse approximation. In Proceedings of the 36th International Conference on Telecommunications and Signal Processing, pp. 700–703. doi:10.1109/TSP.2013.6614027.

  • Farina, D., & Aszmann, O. (2014). Bionic limbs: Clinical reality and academic promises. Science Translational Medicine, 8; 6(257):257, 12, 1.O.C.

    Google Scholar 

  • Fougner, A., Stavdahl, O., Kyberd, P. J., Losier, Y. G., & Parker, P. (2012). Control of upper limb prostheses: terminology and proportional myoelectric control: A review. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20, 663–677.

    Article  Google Scholar 

  • Fumero, R., Costantino, M. L. (2001). Organi artificiali. In Storia della Bioingegneria (vol. 6, pp. 341–365). Patron.

    Google Scholar 

  • Gonzales, D. S., & Castellini, C. (2013). A realistic implementation of ultrasound imaging as a human-machine interface for upper limb amputees. Frontiers in Neurorobotics, 7, 1–11. doi:10.3389/fnbot.2013.00017.

    Google Scholar 

  • Hoffmann, K. P., & Kock, K. P. (2005). Final report on design consideration of tLIFE2. Technology Report IBMT.

    Google Scholar 

  • Hoffmann, K. P., & Micera, S. (2011). Neuroprosthetics. In R. Kramme, K. P. Hoffmann, & B. Pozos (Eds.), Handbook medical technology (1st ed., pp. 785–800). Heidelberg New York: Springer.

    Chapter  Google Scholar 

  • Jang, C. H., Yang, H. S., Yang, H. E., Lee, S. Y., Kwon, J. W., Yun, B. D. et al. (2011). A survey on activities of daily living and occupations of upper extremity amputees. Annals of Rehabilitation Medicine, 35. doi:10.5535/arm.2011.35.6.907.

  • Jensen, W., Micera, S., Navarro, X., Stieglitz, T., Guiraud, D., Divoux, J. L. et al. (2010). Development of an implantable transverse intrafascicular multichannel electrode (TIME) system for relieving phantom limb pain. In 32nd Annual International Conference of the IEEE EMBS, pp. 6214–6217.

    Google Scholar 

  • Jiang, N., & Farina, D. (2014). Myoelectric control of upper limb prosthesis: Current status, challenges and recent advances. Front. Neuroeng. Conference.

    Google Scholar 

  • Kyberd, P. J., & Hill, W. (2007). Survey of upper limb prosthesis users in Sweden and the United Kingdom. Journal of Prosthetics and Orthotics, 19, 55–66. doi:10.1177/0309364611409099.

    Article  Google Scholar 

  • LeBlanc, M. (2008). Give hope—Give a hand. The LN-4 prosthetic hand. Accessed October 1, 2013, Available: http://www.stanford.edu/class/engr110/2011/LeBlanc-03a.pdf.

  • Li, N., Yang, D., Jiang, L., Liu, H., & Cai, H. (2012). Combined use of FSR sensor array and SVM classifier for finger motion recognition based on pressure distribution map. Journal of Bionic Engineering, 9, 39–47. doi:10.1016/S1672-6529(11)60095-4.

    Article  Google Scholar 

  • Lucchetti, M., Cutti, A. G., Verni, G., Sacchetti, R., & Rossi, N. (2015). Impact of Michelangelo prosthetic hand: Findings from a crossover longitudinal study. Journal of Rehabilitation Research and Development, 52(5), 605–618. doi:10.1682/JRRD.2014.11.0283.

    Article  Google Scholar 

  • Micera, S., Navarro, X., Carpaneto, J., Citi, L., Tonet, O., Rossini, P. M., et al. (2008). On the use of longitudinal intrafascicular peripheral interfaces of the control of cybernetic hand prostheses in amputees. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(5), 453–472.

    Article  Google Scholar 

  • Naples, G. G., Mortimer, J. T., Scheiner, A., & Sweeney, J. D. (1988). A spiral nerve cuff electrode for peripheral nerve stimulation. IEEE Transactions on Biomedical Engineering, 35, 905–916.

    Article  Google Scholar 

  • Navarro, X., Krueger, T. B., Lago, N., Micera, S., Stieglitz, T., & Dario, P. (2005). A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. Journal of the Peripheral Nervous System, 10, 229–258.

    Article  Google Scholar 

  • Navarro, X., Lago, N., Vivó, M., Yoshida, K., Koch, K. P., Poppendieck, W., et al. (2007). Neurobiological evaluation of thin-film longitudinal intrafascicular electrodes as a peripheral nerve interface. In Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 643–649.

    Google Scholar 

  • Ortiz-Catalan, M., Hakansson, B., & Branemark, R. (2014). An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Science Translational Medicine. doi:10.1126/scitranslmed.3008933.

    Google Scholar 

  • Østlie, K., Lesjø, I. M., Franklin, R. J., Garfelt, B., Skjeldal, O. H., & Magnus, P. (2012). Prosthesis use in adult acquired major upper-limb amputees: Patterns of wear, prosthetic skills and the actual use of prostheses in activities of daily life. Disability and Rehabilitation: Assistive Technology, 7, 479–493. doi:10.3109/17483107.2011.653296.

    Article  Google Scholar 

  • Pasquina, P. F., Evangelista, M., Carvalho, A. J., Lockhart, J., Griffin, S., Nanos, G., et al. (2015). First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand. Journal of Neuroscience Methods, 244, 85–93. doi:10.1016/j.jneumeth.2014.07.016.

    Article  Google Scholar 

  • Peerdeman, B., Boere, D., Witteveen, H. J. B., Hermens, H. J., Stramigioli, S., Rietman, J. S., et al. (2011). Myoelectric forearm prostheses: State of the art from a user-centered perspective. Journal of Rehabilitation Research and Development, 48, 719–737. doi:10.1682/JRRD.2010.08.0161.

    Article  Google Scholar 

  • Popov, B. (1965). The bio-electrically controlled prosthesis. The Journal of Bone and Joint Surgery (British), 47B, 421–424.

    Google Scholar 

  • Poppendieck, W., Muceli, S., Dideriksen, J., Rocon, E., Pons, J. L., Farina, D. et al. (2015). A new generation of double-sided intramuscular electrodes for multi-channel recording and stimulation. 37th Annual International Conference of the IEEE EMBS, pp. 7135–7138.

    Google Scholar 

  • Pylatiuk, C., Schultz, S., & Doderlein, L. (2007). Results on internet survey of myoelectricprosthetic hand users. Prosthetics and Orthotics International, 31(4), 362–370. doi:10.1080/03093640601061265.

    Article  Google Scholar 

  • Raspopovic, S., Capogrosso, M., Petrini, F., Bonizzato, M., Rigosa, J., Di Pino, G. et al. (2015). Restoring natural sensory feedback in real-time bidirectional hand prostheses Science. Translational Medicine, 6(222).

    Google Scholar 

  • Rossini, P. M., Micera, S., Benvenuto, A., Carpaneto, J., Cavallo, G., Citi, L., et al. (2010). Double nerve intraneural interface implant on a human amputee for robotic hand control. Clinical Neurophysiology, 121, 777–783.

    Article  Google Scholar 

  • Schiefer, M., Tan, D., Sidek, S. M., & Tyler, D. J. (2015). Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. Journal of Neural Engineering, 13(1), 016001.

    Article  Google Scholar 

  • Schofield, J. S., Evans, K. R., Carey, J. P., Hebert, J. S. (2014). Applications of sensory feedback in motorized upper extremity prosthesis: A review. Expert Review of Medical Devices, 1–13.

    Google Scholar 

  • Tan, D. W., Schiefer, M. A., Keith, M. W., Anderson, J. R., Tyler, J., & Tyler, D. J. (2014). A neural interface provides long-term stable natural touch perception. Science Translational Medicine, 6, 257ra138. doi:10.1126/scitranslmed.3008669.

  • Tyler, D. J., & Durand, D. M. (2002). Functionally selective peripheral nerve stimulation with a flat interface nerve electrode. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10(4), 294–303.

    Article  Google Scholar 

  • Tyler, D. J., & Durand, D. M. (2003). Chronic response of the rat sciatic nerve to the flat interface nerve electrode. Annals of Biomedical Engineering, 31, 633–642. doi:10.1114/1.1569263.

    Article  Google Scholar 

  • Van Lunteren, A., Van Lunteren-Gerritsen, G. N. M., Stassen, N. C., & Zuithoff, M. J. (1983). A field evaluation of arm prostheses for unilateral amputees. Prosthetics and Orthotics International, 7, 51–141. doi:10.3109/03093648309166586.

    Google Scholar 

  • Wininger, M., Kim, N. H., Craelius, W. (2008). Pressure signature of fore-arm as predictor of grip force. Journal of rehabilitation research and Development, 45, 883–892. doi:10.1682/JRRD.2007.11.0187.

  • Wright, T. W., Hagen, A. D., & Wood, M. B. (1995). Prosthetic usage in major upper extremity amputations. Journal of Hand Surgery., 20A, 22–619. doi:10.1016/S0363-5023(05)80278-3.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian Institute for Labour Accidents (INAIL) with PPR 2 project (CUP: E58C13000990001) and by the European Project H2020/AIDE (CUP J42I15000030006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Lisa Ciancio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ciancio, A.L., Cordella, F., Hoffmann, KP., Schneider, A., Guglielmelli, E., Zollo, L. (2017). Current Achievements and Future Directions of Hand Prostheses Controlled via Peripheral Nervous System. In: Bertolaso, M., Di Stefano, N. (eds) The Hand. Studies in Applied Philosophy, Epistemology and Rational Ethics, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-319-66881-9_5

Download citation

Publish with us

Policies and ethics