Skip to main content

Abstract

The Marangoni effect caused by surface tension gradient is modeled. The resulting convection flow in the melt pool is demonstrated with different values of the Marangoni coefficient. Its influence on the temperature distribution, the shape of melt pool and thus the shape of solidified track is presented. The role of Marangoni convection on the stability of melt pool and the surface quality of the final track are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hagedorn, Y.-C., Wilkes, J., Meiners, W., Wissenbach, K., Poprawe, R.: Net shaped high performance oxide ceramic parts by selective laser melting. Phys. Proc. 5, 587–594 (2010). doi:10.1016/j.phpro.2010.08.086

    Article  Google Scholar 

  2. Gusarov, A.V., Yadroitsev, I., Bertrand, Ph., Smurov, I.: Heat transfer modelling and stability analysis of selective laser melting. App. Surf. Sci. 254, 975–979 (2007). doi:10.1016/j.apsusc.2007.08.074

  3. Gu, D., Shen, Y.: Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and controls methods. Mater. Des. 30, 2903–2910 (2009). doi:10.1016/j.matdes.2009.01.013

    Article  Google Scholar 

  4. Khairallah, S.A., Anderson, A.T., Rubenchik, A., King, W.E.: Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 108, 36–45 (2016). doi:10.1016/j.actamat.2016.02.014

    Article  Google Scholar 

  5. Chan, C., Mazumder, J., Chen, M.M.: A two-dimensional transient model for convection in laser melted pool. Meta. Trans. A 15, 2175–2184 (1984). doi:10.1007/BF02647100

    Article  Google Scholar 

  6. Yuan, P., Gu, D.: Molten pool behavior and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments. J. Phy. D: App. Phy. 48, 035303 (2015). doi:10.1088/0022-3727/48/3/035303

    Article  Google Scholar 

  7. Qiu, C., Panwisawas, C., Ward, M., Basoalto, H.C., Brooks, J.W., Attallah, M.M.: On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater. 96, 72–79 (2015). doi:10.1016/j.actamat.2015.06.004

    Article  Google Scholar 

  8. Chen, Q., Guillemot, G., Gandin, C.-A., Bellet, M.: Three-dimensional finite element thermomechanical modeling of additive manufacturing by selective laser melting for ceramics materials. Add. Manu. 16, 124–137 (2017). doi:10.1016/j.addma.2017.02.005

    Google Scholar 

  9. Desmaison, O., Bellet, M., Guillemot, G.: A level set approach for the simulation of the multipass hybrid laser/GMA welding process. Comput. Mater. Sci. 91, 240–250 (2014). doi:10.1016/j.commatsci.2014.04.036

    Article  Google Scholar 

  10. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992). doi:10.1016/0021-9991(92)90240-Y

    Article  MathSciNet  MATH  Google Scholar 

  11. Shakoor, M., Scholtes, B., Bouchard, P.-O., Bernacki, M.: An efficient and parallel level set reinitialization method - application to micromechanics and microstructural evolutions. Appl. Math. Model. 39, 7291–7302 (2015). doi:10.1016/j.apm.2015.03.014

    Article  MathSciNet  Google Scholar 

  12. Paradis, P.-F., Ishikawa, T.: Surface tension and viscosity measurements of liquid and undercooled alumina by containerless techniques. Jap. Soc. App. Phy. 44, 5082–5085 (2005). doi:10.1143/JJAP.44.5082

    Article  Google Scholar 

  13. Morrell, R.: Handbook of Properties of Technical & Engeering Ceramics. H.M.S.O, London (1985)

    Google Scholar 

  14. Chase, M.W.: Thermochemical tables. NIST-JANAF (1998)

    Google Scholar 

  15. Touloukian, Y.S., Kirby, R.K., Taylor, R.E., Lee, T.T.R.: Thermal expansion -nonmetallic solids. Thermophys. Prop. Matter. 13, 176–177 (1984)

    Google Scholar 

  16. Kawai, Y., Shiraishi, Y.: Handbook of Physico-chemical Properties at High Temperatures, ISIJ (1988)

    Google Scholar 

  17. Lihrmann, J.M., Haggerty, J.S.: Surface tensions of alumina-containing liquids. J. Am. Ceram. Soc. 68, 81–85 (1985). doi:10.1111/j.1151-2916.1985.tb15269.x

    Article  Google Scholar 

Download references

Acknowledgements

This work has been conducted within the framework of the CEFALE project, part of the ACLAME program funded by the Institut CARNOT MINES (Paris, FR). The authors would like to thank Christophe Colin, Jean-Dominique Bartout, Marie-Hélène Berger and Liliana Moniz Da Silva Sancho from MINES ParisTech Centre des Matériaux (Evry, FR) for invaluable information regarding AM by LBM(SLM) and ceramic materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Bellet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Chen, Q., Guillemot, G., Gandin, CA., Bellet, M. (2018). Finite Element Modeling of Ceramic Deposition by LBM(SLM) Additive Manufacturing. In: Meboldt, M., Klahn, C. (eds) Industrializing Additive Manufacturing - Proceedings of Additive Manufacturing in Products and Applications - AMPA2017. AMPA 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-66866-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66866-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66865-9

  • Online ISBN: 978-3-319-66866-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics