Skip to main content

A Design Method for SLM-Parts Using Internal Structures in an Extended Design Space

  • Conference paper
  • First Online:

Abstract

Selective laser melting enables the production of cavities as well as internal structures and thus opens up new lightweight potentials for mechanically loaded components. This paper describes a design method for weight-optimization by applying internal structures in an extended design space compared to conventional models. Based on a pedal crank as a demonstrator, the objective is a maximum weight reduction with predefined stresses and a homogeneous stress distribution. The basic dimensioning of the design space is limited by assembly and application restrictions. By using computer aided design tools and topology optimization in an iterative procedure, a step wise confinement of the design space takes place. Concerning the same interfaces and functions as the conventional pedal crank, new model generations with the advantage of force flow adapted structures are built up. Using Finite Element Method, a continuous evaluation of the impact from a change of design towards the weight/stress ratio is performed. The created models are evaluated regarding their weight reduction in order to select the most efficient one. The final model has a large-volume geometry with the simultaneous integration of internal structures and cavities. A validation compared to the initial model as well as to a model with conventional design space and selective areas with internal structures quantifies the optimization result. Based on the acquired knowledge from this comparison, an estimation of the weight reduction potential concerning the design method is given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gibson, I., Rosen, D., Stucker, B.: Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. Springer (2015). ISBN 978-1-4939-2112-6

    Google Scholar 

  2. Gartner Marktforschungsunternehmen: Hype cycle for emerging technologies maps the journey to digital business (2014). www.gartner.com. Accessed 17 June 2016

  3. Gebhardt, A.: Generative Fertigungsverfahren: Additive Manufacturing und 3D Drucken für Prototyping – Tooling – Produktion, 4th edn. Hanser (2013)

    Google Scholar 

  4. Poprawe, R., et al.: Production systems: recent developments in process development, machine concepts and component design. In: Advances in production Technology. Springer (2015)

    Google Scholar 

  5. Emmelmann, C., Sander, P., Kranz, J., Wycisk, E.: Laser additive manufacturing and bionics: redefining lightweight design. Phys. Proc. 12, 364–368 (2011)

    Article  Google Scholar 

  6. Teufelhart, S.: Geometrie- und belastungsgerechte Optimierung von Leichtbaustrukturen für die additive Fertigung. Additive Fertigung, Seminarbericht (2012)

    Google Scholar 

  7. Lippert, R.B., Lachmayer, R.: Topology examination for additive manufactured aluminum components. In: Proceedings of the 3rd DDMC, Berlin, Germany (2016)

    Google Scholar 

  8. Hague, R., Mansour, S., Saleg, N.: Design opportunities with rapid manufacturing. Assem. Autom. 23(4), 346–356 (2002)

    Article  Google Scholar 

  9. Chen, T., Fritz, S., Shea, K.: Design for mass customization using additive manufacturing: case-study of a balloon-powered car. In: Proceedings of the 20th ICED15, Milan, Italy (2015)

    Google Scholar 

  10. Lippert, R.B., Lachmayer, R.: Bionic inspired infill structures for a light-weight design by using SLM. In: Proceedings of the 14th DESIGN Conference, Dubrovnik, Croatia (2016)

    Google Scholar 

  11. Smith, M., et al.: Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. Int. J. Mech. Sci. 67, 28–41 (2013)

    Article  Google Scholar 

  12. Lachmayer, R., Lippert, R.B., Fahlbusch, T.: 3D-Druck beleuchtet – Additive Manufacturing auf dem Weg in die Anwendung. Springer, Germany (2016). ISBN 978-3-662-49055-6

    Book  Google Scholar 

  13. Ullah, I., et al.: Performance of bio-inspired kagome truss core structures under compression and shear loading. J. Compos. Struct. 118, 294–302 (2014)

    Article  Google Scholar 

  14. Reinhart, G., Teufelhart, S.: Load-adapted design of generative manufactured lattice structures. Phys. Proc. 12, 385–392 (2011)

    Article  Google Scholar 

  15. Lippert, R.B., Lachmayer, R.: Einflussfaktoren innerer strukturen im gestaltungsprozess von strukturbauteilen für das selektive laserstrahlschmelzen. In: Proceedings of the 14th Rapid.Tech, Erfurt, Germany (2017)

    Google Scholar 

  16. Lachmayer, R., Lippert, R.B.: Additive Manufacturing Quantifiziert. Springer, Heidelberg, May 2017. ISBN 978-3-662-54112-8

    Google Scholar 

  17. Vayre, B., et al.: Designing for additive manufacturing. In: 45th CIRP Conference on Manufacturing Systems (2012)

    Google Scholar 

  18. VDI 3405 Part 3: Additive manufacturing processes, rapid manufacturing - design rules for part production using laser sintering and laser beam melting. Beuth, Berlin, Germany (2015)

    Google Scholar 

  19. Roth, K.: Konstruieren mit Konstruktionskatalogen - Band 1: Konstruktionslehre, 3. Auflage. Springer, Germany (2000). ISBN 978-3-642-17466-7

    Google Scholar 

  20. Zimmer, D., Adam, G.: Direct manufacturing design rules. In: Innovative Developments in Virtual and Physical Prototyping (2012)

    Google Scholar 

  21. Kranz, J., Herzog, D., Emmelmann, C.: Design guidelines for laser additive manufacturing of lightweight structures in TiAl6V4. J. Laser Appl. 27, S14001 (2015)

    Article  Google Scholar 

  22. EOS GmbH: Material data sheet EOS Aluminium AlSi10Mg. EOS GmbH (2014)

    Google Scholar 

  23. DIN EN 515:2016-01: Aluminium und Aluminiumlegierungen - Halbzeug - Bezeichnungen der Werkstoffzustände. Beuth Verlag (2015)

    Google Scholar 

  24. Tang, M., Pistorius, P.C.: Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting. Int. J. Fatigue 94, 192–201 (2016)

    Article  Google Scholar 

  25. Brandl, E., Heckenberger, U., Holzinger, V., Buchbinder, D.: Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater. Des. 34, 159–169 (2012)

    Article  Google Scholar 

  26. Kempen, K., Thijs, L., Van Humbeeck, J., Kruth, J.P.: Mechanical properties of AlSi10Mg produced by selective laser melting. Phys. Proc. 39, 439–446 (2012). doi:10.1016/j.phpro.2012.10.059

    Article  Google Scholar 

  27. Anyalebechi, P.: Effect of process route on the structure, tensile, fatigue properties of aluminum alloy steering knuckles. Int. Foundry Res. 63(3), 32–43 (2011)

    Google Scholar 

  28. Humbeeck, J.V., Thijs, L.: PFC: AlSi10Mg parts produced by Selective Laser Melting (SLM). Miguel Godino Martínez. Industrial Engineering. Specialty: Materials (2013)

    Google Scholar 

  29. Sullivan, S., Chris, H.: Weight Reduction Case Study of a Premium Road Bicycle Crank Arm Set by Implementing Beralcast® 310, Vancouver (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rene Bastian Lippert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Lippert, R.B., Lachmayer, R. (2018). A Design Method for SLM-Parts Using Internal Structures in an Extended Design Space. In: Meboldt, M., Klahn, C. (eds) Industrializing Additive Manufacturing - Proceedings of Additive Manufacturing in Products and Applications - AMPA2017. AMPA 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-66866-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66866-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66865-9

  • Online ISBN: 978-3-319-66866-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics