Skip to main content

Development and Optimization of an Innovative Double Chamber Nozzle for Highly Efficient DMD

  • Conference paper
  • First Online:
Industrializing Additive Manufacturing - Proceedings of Additive Manufacturing in Products and Applications - AMPA2017 (AMPA 2017)

Abstract

Injection nozzles design in Direct Metal Deposition (DMD) critically affects the performances of the process in terms of powder deposition efficiency. In fact, the fluid-dynamic behavior of the powder particles falling into the molten pool strongly depends both on the internal geometry of the deposition nozzle and on the geometry of the nozzle outlet. This efficiency, for commercial nozzles, is usually under 50%, thus implying an unaffordable powder waste. SUPSI implemented an innovative nozzle concept, designed as a coaxial double chamber that enables the concurrent flow of the powder-carrier gas mixture and of the shielding gas. In this configuration, the shielding gas allows to reduce the spread of the blown powder particles, constraining the carrier gas flow and limiting its divergence. Such innovative design also enables the integration of various modules - different in shape - to be nested to the bottom end of the nozzle, in order to adapt its outlet geometry. The main objective of the design is to influence the shape of the powder flux ejected from the nozzle outlet by exploiting the shielding gas while limiting oxidation processes. In order to assess the influence of the feeding parameters on the flow geometry, different concepts and shapes of nozzle outlet have been tested and investigated against the deposition efficiency, both numerically and experimentally. The testing campaign relies upon an image analysis performed on a demonstration setup where the powder flux is tracked using a high-speed camera. Experimental results demonstrate improved deposition efficiency through a significant (up to 18%) spread reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borealis project. http://www.borealisproject.eu/project/

  2. Thompson, S.M., Bian, L., Shamsaei, N., Yadollahi, A.: An overview of direct laser deposition for additive manufacturing; part I: transport phenomena, modeling and diagnostics. Add. Manuf. 8, 36–62 (2015). doi:10.1016/j.addma.2015.07.001

    Google Scholar 

  3. Shamsaei, N., Yadollahi, A., Bian, L., Thompson, S.M.: An overview of direct laser deposition for additive manufacturing; part II: mechanical behaviour, process parameter optimization and control. Add. Manuf. 8, 12–35 (2015). doi:10.1016/j.addma.2015.07.002

    Google Scholar 

  4. Huang, Y., Khamesee, M.B., Toyserkani, E.: A comprehensive analytical model for laser powder-fed additive manufacturing. Add. Manuf. 12, 90–99 (2016). doi:10.1016/j.addma.2016.07.001

    Google Scholar 

  5. Pinkerton, A.J.: Advances in the modelling of laser direct metal deposition. J. Laser Appl. 27, S15001 (2005). doi:10.2351/1.4815992

    Article  Google Scholar 

  6. Lin, J.: A simple model of powder catchment in coaxial laser cladding. Opt. Laser Technol. 31, 233–238 (1999)

    Article  Google Scholar 

  7. Zekovic, S., Dwivedi, R., Kovacevic, R.: Numerical simulation and experimental investigation of gas-powder flow from radially symmetrical nozzles in laser-based direct metal deposition. J. Mach. Tools Manuf. 47, 112–123 (2007). doi:10.1016/j.ijmachtools.2006.02.004

    Article  Google Scholar 

  8. Yang, N.: Concentration model based on movement model of powder flow in coaxial laser cladding. Opt. Laser Technol. 41, 94–98 (2009). doi:10.1016/j.optlastec.2008.03.008

    Article  Google Scholar 

  9. Liu, S., Zhang, Y., Kovacevic, R.: Numerical simulation and experimental study of powder flow distribution in high power direct diode laser cladding process. Lasers Manuf. Mater. Process. 2, 199–218 (2015). doi:10.1007/s40516-015-0015-2

    Article  Google Scholar 

  10. Brugnetti, I., Colla, M., Marchetti, A., Valente, A.: Nozzle Apparatus for Direct Energy Deposition. Patent Pending. App. Number EP16201499 (2016)

    Google Scholar 

  11. Balu, P., Leggett, P., Kovacevic, R.: Parametric study on a coaxial multi-material powder flow in laser-based powder deposition process. J. Mater. Process. Technol. 212, 1598–1610 (2012). doi:10.1016/j.jmatprotec.2012.02.020

    Article  Google Scholar 

  12. Zhu, G., Li, D., Zhang, A., Tang, Y.: Numerical simulation of metallic powder flow in a coaxial nozzle in laser direct metal deposition. J. Opt. Laser Technol. 43, 106–113 (2011). doi:10.1016/j.optlastec.2010.05.012

    Article  Google Scholar 

  13. Zhang, B., Coddet, C.: Numerical study on the effect of pressure and nozzle dimension on particle distribution and velocity in laser cladding under vacuum base on CFD. J. Manuf. Process. 23, 54–60 (2016). doi:10.1016/j.jmapro.2016.05.019

    Article  Google Scholar 

  14. Tabernero, I., Lamikiz, A., Ukar, E., de Lacalle, L.N.L., Angulo, C., Urbikain, G.: Numerical simulation and experimental validation of powder flux distribution in coaxial laser cladding. J. Mater. Process. Technol. 210, 2125–2134 (2010). doi:10.1016/j.jmatprotec.2010.07.036

    Article  Google Scholar 

  15. Wen, S.Y., Shin, Y.C., Murthy, J.Y., Sojka, P.E.: Modelling of coaxial powder flow for the laser direct deposition process. Int. J. Heat Mass Transfer 52, 5867–5877 (2009). doi:10.1016/j.ijheatmasstransfer.2009.07.018

    Article  MATH  Google Scholar 

  16. ImageJ, Image Processing and Analysis in Java. https://imagej.nih.gov/ij/

Download references

Acknowledgements

The research has been partially funded by European H2020 Borealis Project (Grant agreement no: 636992).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrea Marchetti , Federico Mazzucato or Anna Valente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Marchetti, A., Mazzucato, F., Valente, A. (2018). Development and Optimization of an Innovative Double Chamber Nozzle for Highly Efficient DMD. In: Meboldt, M., Klahn, C. (eds) Industrializing Additive Manufacturing - Proceedings of Additive Manufacturing in Products and Applications - AMPA2017. AMPA 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-66866-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66866-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66865-9

  • Online ISBN: 978-3-319-66866-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics