Skip to main content

Evolution of Design Guidelines for Additive Manufacturing - Highlighting Achievements and Open Issues by Revisiting an Early SLM Aircraft Bracket

  • Conference paper
  • First Online:
Industrializing Additive Manufacturing - Proceedings of Additive Manufacturing in Products and Applications - AMPA2017 (AMPA 2017)

Abstract

Design knowledge is important for the success of new technologies. This is especially true for Additive Manufacturing technologies like Selective Laser Melting (SLM), which offer a higher degree of freedom, but also very different restriction in design compared to conventional manufacturing technologies. An analysis of current and previous designs from aerospace and motorsports identifies important drivers in Design for Additive Manufacturing. To visualize the advances in design knowledge an SLM aircraft bracket is re-designed based on today’s state of the art almost 10 years after its initial design for additive manufacturing. The analysis reveals important factors for a “good” design. In early designs the focus of engineers was on the manufacturability of the part itself, while the capabilities of CAD tools limited the designer. Nowadays designs show a more holistic view on the manufacturing process chain and the part’s application, e.g. by integrating provisions for conventional post-processing and fatigue optimized shapes and surfaces. Some issues are still open and need to be addressed in the next generation of guidelines, tools and equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meiners, W.: Direktes Selektives Laser Sintern einkomponentiger metallischer Werkstoffe. Berichte aus der Lasertechnik. Shaker, Aachen (1999)

    Google Scholar 

  2. Cloots, M., Uggowitzer, P.J., Wegener, K.: Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles. Mater. Des. 89, 770–784 (2016)

    Article  Google Scholar 

  3. Spierings, A.B., Dawson, K., Voegtlin, M., Palm, F., Uggowitzer, P.J.: Microstructure and mechanical properties of as-processed scandium-modified aluminium using selective laser melting. CIRP Ann. - Manufact. Technol. 65(1), 213–216 (2016)

    Article  Google Scholar 

  4. Boeing Company: Orders & deliveries (2017). http://www.boeing.com/commercial/#/orders-deliveries

  5. Airbus SAS: The market/orders and deliveries (2017). http://www.airbus.com/company/market/orders-deliveries/

  6. Lee, J.J., Lukachko, S.P., Waitz, I.A., Schafer, A.: Historical and future trends in aircraft performance, cost and emissions. Annu. Rev. Energy Env. 26, 167–200 (2001)

    Article  Google Scholar 

  7. Greene, D.L.: Commercial air transport energy use and emissions: is technology enough? In: Conference on Sustainable Transportation-Energy Strategies (1995)

    Google Scholar 

  8. Johnson, V.S.: Minimizing life cycle cost for subsonic commercial aircraft. J. Aircr. 27(2), 139–145 (1990)

    Article  Google Scholar 

  9. Klahn, C.: Topologische Optimierung der Gestaltung von lasergenerierten Funktionsbauteilen der Luftfahrttechnik. Diplomarbeit. Institute of Laser and System Technologies (iLAS), TU Hamburg-Harburg, Hamburg (2008)

    Google Scholar 

  10. Onuh, S.O., Yusuf, Y.Y.: Rapid prototyping technology: applications and benefits for rapid product development. J. Intell. Manuf. 10, 301–311 (1999)

    Article  Google Scholar 

  11. Trenke, D.: Konstruktionsregeln für eine Rapid Tooling gerechte Gestaltung von Werkzeugen und Prototypen. IMW - Institutsmitteilung 25, 85–90 (2000)

    Google Scholar 

  12. Rehme, O., Emmelmann, C.: Reproducability for properties of selective laser melting products. In: Beyer, E., Dausinger, F., Ostendorf A., Otto, A. (eds.) Proceedings of the Third International WLT-Conference on Lasers in Manufacturing 2005. AT-Fachverlag, München (2005)

    Google Scholar 

  13. Aumund-Kopp, C., Petzoldt, F.: Laser sintering of parts with complex internal structures. In: Lawcock, R., Lawley, A., McGeehan, P.J. (eds.) Advances in Powder Metallurgy & Particulate Materials - 2008, pp. 85–97. Metal Powder Industries Federation, Princeton (2008)

    Google Scholar 

  14. Burton, M.J.: Design for rapid manufacture: developing an appropriate knowledge transfer tool for industrial designers. Ph.D. thesis, Loughborough University, Loughborough (2005)

    Google Scholar 

  15. Hopkinson, N., Hague, R.J., Dickens, P.M. (eds.): Rapid Manufacturing: An Industrial Revolution for the Digital Age. Wiley, Chichester (2006)

    Google Scholar 

  16. Thomas, D.: The development of design rules for selective laser melting. Ph.D. thesis, University of Wales Institute, Cardiff (2009)

    Google Scholar 

  17. Adam, G.A.O., Zimmer, D.: Design for additive manufacturing - element transitions and aggregated structures. CIRP J. Manufact. Sci. Technol. 7, 20–28 (2014)

    Article  Google Scholar 

  18. Adam, G.A.O.: Systematische Erarbeitung von Konstruktionsregeln für die additiven Fertigungsverfahren Lasersintern, Laserschmelzen und Fused Deposition Modeling, Forschungsberichte des Direct Manufacturing Research Centers, vol. 1. Shaker, Aachen (2015)

    Google Scholar 

  19. Kranz, J., Herzog, D., Emmelmann, C.: Design guidelines for laser additive manufacturing of lightweight structures in TiAl6V4. J. Laser Appl. 27, S14001 (2015)

    Article  Google Scholar 

  20. Verein Deutscher Ingenieure - VDI: Additive Fertigungsverfahren - Konstruktionsempfehlungen für die Bauteilfertigung mit Laser-Sintern und Laser-Strahlschmelzen (2015)

    Google Scholar 

  21. Wohlers, T.T., Caffrey, T.: Wohlers Report 2015: 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report. Wohlers Associates, Fort Collins (2015)

    Google Scholar 

  22. Vogel, H., Tangwiriyasakul, C., Emmelmann, C.: Analysis of cooling channel design for injection molds manufactured by laser freeform fabrication. In: Vollertsen, F. (ed.) Proceedings of the Fourth International WLT-Conference on Lasers in Manufacturing 2007. AT-Fachverlag, München (2007)

    Google Scholar 

  23. Meckley, J., Edwards, R.: A study on the design and effectiveness of conformal cooling channels in rapid tooling inserts. Technol. Interface J. 10(1), 1–28 (2009)

    Google Scholar 

  24. Emmelmann, C., Petersen, M., Kranz, J., Wycisk, E.: Bionic lightweight design by laser additive manufacturing for aircraft industry. In: Ambs, P., Curticapean, D., Emmelmann, C., Knapp, W., Kuznicki, Z.T., Meyrueis, P.P. (eds.) SPIE Eco-Photonics 2011 Sustainable Design, Manufacturing, and Engineering Workforce Education for a Green Future, vol. 8065. Society of Photo-Optical Instrumentation Engineers (SPIE), Strassburg (2011)

    Google Scholar 

  25. Emmelmann, C., Sander, P., Kranz, J., Wycisk, E.: Laser additive manufacturing and bionics: redefining lightweight design. Phys. Procedia 12, 364–368 (2011)

    Article  Google Scholar 

  26. Kruth, J.P., Vandenbroucke, B., Vaerenbergh, J.V., Mercelis, P.: Benchmarking of different SLS/SLM processes as rapid manufacturing techniques. In: International Conference on Polymers and Moulds Innovations (PMI). University of Texas, Gent (2005)

    Google Scholar 

  27. Bendsøe, M.P.: Optimal shape design as a material distribution problem: structural optimization, computer-aided optimal design of stressed systems and components. Struct. Optim. 1(4), 193–202 (1989)

    Article  Google Scholar 

  28. Kantareddy, S.N.R., Ferguson, I., Frecker, M., Simpson, T.W., Dickman, C.J.: Topology optimization software for additive manufacturing: a review of current capabilities and a real-world example. In: ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p. V02AT03A029. Charlotte, NC (2016)

    Google Scholar 

  29. Klahn, C., Gysemberg, R., Rehme, O.: Stütze für ein im Selective Laser Melting-Verfahren herstellbares Flugzeugstrukturbauteil. German Patent DE 10 2008 044 759 B4 (2010)

    Google Scholar 

  30. Leutenecker-Twelsiek, B., Klahn, C., Meboldt, M.: Considering part orientation in design for additive manufacturing. Procedia CIRP 50, 408–413 (2016)

    Article  Google Scholar 

  31. Klahn, C., Leutenecker, B., Meboldt, M.: Design strategies for the process of additive manufacturing. Procedia CIRP 36, 230–235 (2015)

    Article  Google Scholar 

  32. Carter, W.T., Erno, D.J., Abbott, D.H., Bruck, C.E., Wilson, G.H., Wolfe, J.B., Finkhousen, D.M., Tepper, A., Stevens, R.G.: The GE aircraft engine bracket challenge: an experiment in crowdsourcing for mechanical design concepts. In: 25th Solid Freeform Fabrication Symposium (SFF 2014), pp. 1402–1411. University of Texas, Austin, TX (2014)

    Google Scholar 

  33. Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H.A., Maier, H.J.: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int. J. Fatigue 48, 300–307 (2013)

    Article  Google Scholar 

  34. Edwards, P., Ramulu, M.: Fatigue performance evaluation of selective laser melted Ti-6Al-4V. Mater. Sci. Eng., A 598, 327–337 (2014)

    Article  Google Scholar 

  35. Spierings, A.B., Starr, T.L., Wegener, K.: Fatigue performance of additive manufactured metallic parts. Rapid Prototyp. J. 19(2), 88–94 (2013)

    Article  Google Scholar 

  36. Brandl, E., Heckenberger, U., Holzinger, V., Buchbinder, D.: Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater. Des. 34, 159–169 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Klahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Klahn, C., Omidvarkarjan, D., Meboldt, M. (2018). Evolution of Design Guidelines for Additive Manufacturing - Highlighting Achievements and Open Issues by Revisiting an Early SLM Aircraft Bracket. In: Meboldt, M., Klahn, C. (eds) Industrializing Additive Manufacturing - Proceedings of Additive Manufacturing in Products and Applications - AMPA2017. AMPA 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-66866-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66866-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66865-9

  • Online ISBN: 978-3-319-66866-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics