Skip to main content

Magnetotransport Phenomena

  • Chapter
  • First Online:
Basic Semiconductor Physics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 3478 Accesses

Abstract

Electron transport in a magnetic field exhibits various interesting characteristics, which is called magnetotransport phenomena. In this chapter we deal with Hall effect, magnetoresistance, and oscillatory magnetoresistance effects in detail. Hall effect is very useful to determine the mobility and density of carriers. Shubnikov–de Haas oscillations are observed in degenerate semiconductors and provide the information of Fermi energy. Magnetophonon resonance arises from inter-Landau level transitions of nondegenerate electron gas and gives the effective mass. Once we know the effective mass we can deduce phonon energy involved with the magnetophonon magnetophonon resonance. These two oscillatory magnetoresistance effects are very widely used to investigate semiconductor parameters. Quantum Hall effect is not dealt with here but discussed in detail in Chap. 8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In order to carry out the integration, we assume that the term to be integrated is a function of \(\varvec{k}\) and \(\varvec{q}\). We then differentiate it with respect to \(\varvec{k}\) and integrate the result with respect to \(\varvec{q}\), and then integrate it with respect to \(\varvec{k}\).

References

  1. L.M. Roth, P.N. Argyres, in Semiconductors and Semimetals, vol. 1, ed. by R.K. Willardson, A.C. Beer (Academic Press, New York, 1966), pp. 159–202

    Google Scholar 

  2. R. Kubo, S.J. Miyake, N. Hashitsume, in Solid State Physics, vol. 17, ed. by F. Seitz, D. Turnbull (Academic Press, New York, 1965) p. 279

    Google Scholar 

  3. R.A. Stradling, R.A. Wood, J. Phys. C 1, 1711 (1968)

    Google Scholar 

  4. J.R. Barker, J. Phys. C, Solid State Phys. 5, 1657–1674 (1972)

    Google Scholar 

  5. P.G. Harper, J.W. Hodby, R.A. Stradling, Rep. Prog. Phys. 36, 1 (1973)

    Google Scholar 

  6. P.N. Argyres, Phys. Rev. 117, 315 (1960)

    Google Scholar 

  7. R. Kubo, H. Hasegawa, N. Hashitsume, J. Phys. Soc. Jpn. 14, 56 (1959)

    Google Scholar 

  8. W.M. Becker, H.Y. Fan, in Proceedings of the 7th International Conference on the Physics of Semiconductors, Paris, 1964 (Dumond, Paris and Academic Press, New York, 1964), p. 663

    Google Scholar 

  9. V.L. Gurevich, Y.A. Firsov, Zh. Eksp. Teor. Fiz. 40, 198–213 (1961) [Sov. Phys.-JETP 13, 137–146 (1961)]

    Google Scholar 

  10. S.M. Puri, T.H. Geballe, Bull. Am. Phys. Soc. 8, 309 (1963)

    Google Scholar 

  11. Y.A. Firsov, V.L. Gurevich, R.V. Pareen’ef, S.S. Shalyt, Phys. Rev. Lett. 12, 660 (1964)

    Google Scholar 

  12. H. Hazama, T. Sugimasa, T. Imachi, C. Hamaguchi, J. Phys. Soc. Jpn. 54, 3488 (1985)

    Google Scholar 

  13. P.N. Argyres, L.M. Roth, J. Phys. Chem. Solids 12, 89 (1959)

    Google Scholar 

  14. C. Herman, C. Weisbuch, Phys. Rev. B 15, 823 (1977)

    Google Scholar 

  15. L.G. Shantharama, A.R. Adams, C.N. Ahmad, R.J. Nicholas, J. Phys. C 17, 4429 (1984)

    Google Scholar 

  16. H. Hazama, T. Sugimasa, T. Imachi, C. Hamaguchi, J. Phys. Soc. Jpn. 55, 1282 (1986)

    Google Scholar 

  17. R.A. Stradling, R.A. Wood, Solid State Commun. 6, 701 (1968)

    Google Scholar 

  18. R.A. Stradling, R.A. Wood, J. Phys. C 3, 2425 (1970)

    Google Scholar 

  19. C. Hamaguchi, K. Shimomae, Y. Hirose, Jpn. J. Appl. Phys. 21(Suppl. 21–3), 92 (1982)

    Google Scholar 

  20. J.L.T. Waugh, G. Dolling, Phys. Rev. 132, 2410 (1963)

    Google Scholar 

  21. J.C. Portal, L. Eaves, S. Askenazy, R.A. Stradling, Solid State Commun. 14, 1241 (1974)

    Google Scholar 

  22. L. Eaves, R.A. Hoult, R.A. Stradling, R.J. Tidey, J.C. Portal, S. Skenazy, J. Phys. C 8, 1034 (1975)

    Google Scholar 

  23. C. Hamaguchi, Y. Hirose, K. Shimomae, Jpn. J. Appl. Phys. 22(Suppl. 22–3), 190 (1983)

    Google Scholar 

  24. Y. Hirose, T. Tsukahara, C. Hamaguchi, J. Phys. Soc. Jpn. 52, 4291 (1983)

    Google Scholar 

  25. L. Eaves, P.P. Guimaraes, F.W. Sheard, J.C. Portal, G. Hill, J. Phys. C 17, 6177 (1984)

    Google Scholar 

  26. N. Mori, N. Nakamura, K. Taniguchi, C. Hamaguchi, Semicond. Sci. Technol. 2, 542 (1987)

    Google Scholar 

  27. N. Mori, N. Nakamura, K. Taniguchi, C. Hamaguchi, J. Phys. Soc. Jpn. 57, 205 (1988)

    Google Scholar 

  28. S. Wakahara, T. Ando, J. Phys. Soc. Jpn. 61, 1257 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chihiro Hamaguchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamaguchi, C. (2017). Magnetotransport Phenomena. In: Basic Semiconductor Physics. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-66860-4_7

Download citation

Publish with us

Policies and ethics