Skip to main content

Cyclotron Resonance and Energy Band Structures

  • Chapter
  • First Online:
Basic Semiconductor Physics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 3530 Accesses

Abstract

Cyclotron resonance experiments were successfully used to determine the effective masses of electrons in the conduction band and holes in the valence bands. Electrons are subject to rotational motion in a magnetic field (cyclotron motion) and resonantly absorb the radiation fields (microwaves or infrared radiation) when the cyclotron frequency is equal to the radiation frequency. The resonant condition gives the effective mass of the electron. Analyzing the cyclotron resonance data of Ge and Si, detailed information of the electrons in the conduction band valleys. In addition, the analysis of the hole masses based on the \(\varvec{k}\cdot \varvec{p}\) perturbation reveals the detailed valence band structures such as the heavy hole, light hole, and spin–orbit split–off bands. The non-parabolicity of the conduction band is also discussed. Quantum mechanical treatment of the electrons in the conduction band and holes in the valence bands leads us to draw the picture of Landau levels which is used to understand magnetotransport in Chap. 7 and quantum Hall effect in Chap. 8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See also Sect. 1.7 of Chap. 1 and (1.146) of p. 51.

  2. 2.

    In many references the average effective mass is expressed as

    $$\begin{aligned} \frac{m}{m^*} = -A \pm \sqrt{B^2 + \frac{C^2}{6}} \,, \end{aligned}$$

    which should be corrected as above.

  3. 3.

    Note that P used in Tables 1.9 and 1.11 is \(P_\mathrm{au} = 2\langle \varGamma _{2^\prime }\left| p_x \right| X \rangle =2P_{0}\) and thus \({\mathcal E}_{P0}=(2/m)P_{0}^2=P_\mathrm{au}^2/2\) m  which is equivalent to \(P_\mathrm{au}^2\) in atomic units.

  4. 4.

    In Sect. 2.6 we deal with the Luttinger parameters and introduce \({\mathcal E}_{P0}=(2/m)P_{0}^2\) with the momentum matrix element \(P_0 = \langle \varGamma _{2'}\vert p_x \vert X\rangle \). The parameter \({\mathcal E}_{P0}\) is often cited for the analysis of the valence band states and of the Luttinger parameters [3, 6]. The values of \({\mathcal E}_{P0}\) for various semiconductors range from 19 to 27 eV. The matrix element introduced by Cardona and Pollak [5] is \(P=2P_{0}\) and \({\mathcal E}_{P0}= P^2/2m\). Also note the difference between the subscripts of \({\mathcal {E}}_p\) and of \({\mathcal {E}}_{P0}\).

  5. 5.

    The matrix elements derived by using the expressions of Dresselhaus et al. are equivalent to the expressions of Luttinger and Kohn except the diagonal elements as discussed before, and the corresponding secular equation of Luttinger and Kohn Hamiltonian gives eigenvalue \({\mathcal {E}}(\varvec{k})\), while the secular equation of Dresselhaus, Kip and Kittel gives \(\lambda ={\mathcal {E}}(\varvec{k})-\hbar ^2k^2/2m\).

  6. 6.

    The reason why the upper four conduction bands appear in the matrix elements is understood from the the selection rules \(\langle \varGamma _{25'}\vert \varvec{p}\vert \varGamma _{l,j}\rangle \), where \(\varvec{p}\) is momentum operator and transforms as the representation \(\varGamma _{15}\), and \(\varGamma _{l,j}\) are upper conduction band states. The direct product is given by using the character table of Table 1.4

    $$ \varGamma _{25'} \times \varGamma _{15} = \varGamma _{12'}+\varGamma _{15}+\varGamma _{2'}+\varGamma _{25} \,, $$

    and thus only the conduction band states of the four representations on the right hand perturb the valence band edge.

  7. 7.

    Equations (2.179a) \(\sim \) (2.179c) are obtained by neglecting the spin–orbit splitting, or by putting \(\varDelta _0=0\) in (2.234a) \(\sim \) (2.234c).

References

  1. G. Dresselhaus, A.F. Kip, C. Kittel, Phys. Rev. 98, 368 (1955)

    Google Scholar 

  2. J.M. Luttinger, W. Kohn, Phys. Rev. 97, 869 (1955)

    Google Scholar 

  3. J.M. Luttinger, Phys. Rev. 102, 1030 (1956)

    Google Scholar 

  4. E.O. Kane, J. Phys. Chem. Solids 1, 82 (1956) and (1957) 249

    Google Scholar 

  5. M. Cardona, F.H. Pollak, Phys. Rev. 142, 530 (1966)

    Google Scholar 

  6. P. Lawaetz, Phys. Rev. B 4, 3460 (1971)

    Google Scholar 

  7. R. Kubo, H. Hasegawa, N. Hashitsume, J. Phys. Soc. Jpn. 14, 56 (1959)

    Google Scholar 

  8. R. Kubo, S.J. Miyake, N. Hashitsume, in Solid State Physics, vol. 17, ed. by F. Seitz, D. Turnbull (Academic Press, New York, 1965) p. 269

    Google Scholar 

  9. R. Bowers, Y. Yafet, Phys. Rev. 115, 1165 (1959)

    Google Scholar 

  10. Q.H.F. Vrehen, J. Phys. Chem. Solids 29, 129 (1968)

    Google Scholar 

  11. L.M. Roth, B. Lax, S. Zwerdling, Phys. Rev. 114, 90 (1959)

    Google Scholar 

  12. W. Zawadzki, Phys. Lett. 4, 190 (1963)

    Google Scholar 

  13. K.L. Litvunenko, L. Nikzat, C.R. Pidgeon, J. Allam, L.F. Cohen, T. Ashley, M. Emeny, W. Zawadzki, B.N. Murdin, Phys. Rev. B 77, 033204 (2008)

    Google Scholar 

  14. W. Zawadzki, P. Pfeffer, R. Bratschitsch, Z. Chen, S.T. Cundiff, B.N. Murdin, C.R. Pidgeon, Phys. Rev. B 78, 245203 (2008)

    Google Scholar 

  15. C. Herman, C. Weisbuch, Phys. Rev. B 15, 823 (1977)

    Google Scholar 

  16. C.R. Pidgeon, R.N. Brown, Phys. Rev. 146, 575 (1966)

    Google Scholar 

  17. E. Burstein, G.S. Picus, Phys. Rev. 105, 1123 (1957)

    Google Scholar 

  18. S. Zwerdling, R.J. Keyes, H.H. Kolm, B. Lax, Phys. Rev. 104, 1805 (1956)

    Google Scholar 

  19. S. Zwerdling, B. Lax, Phys. Rev. 106, 51 (1957)

    Google Scholar 

  20. S. Zwerdling, B. Lax, L.M. Roth, Phys. Rev. 108, 1402 (1957)

    Google Scholar 

  21. S. Zwerdling, B. Lax, L.M. Roth, K.J. Button, Phys. Rev. 114, 80 (1959)

    Google Scholar 

  22. T.B. Bahder, Phys. Rev. B 41, 11992 (1990)

    Google Scholar 

  23. Y. Zhang, Phys. Rev. B 49, 14352 (1994)

    Google Scholar 

  24. C. Pryor, Phys. Rev B 57, 7190 (1998)

    Google Scholar 

  25. S.H. Groves, C.R. Pidgeon, A.W. Ewald, R.J. Wagner, J. Phys. Chem. Solids 30, 2031 (1970)

    Google Scholar 

  26. J.C. Hensel, K. Suzuki, Phys. Rev. Lett. 22, 838 (1969)

    Google Scholar 

  27. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)

    Google Scholar 

  28. H. Hazama, T. Sugimasa, T. Imachi, C. Hamaguchi, J. Phys. Soc. Jpn. 55, 1282 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chihiro Hamaguchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamaguchi, C. (2017). Cyclotron Resonance and Energy Band Structures. In: Basic Semiconductor Physics. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-66860-4_2

Download citation

Publish with us

Policies and ethics