Skip to main content

Experimental Procedures and Materials

  • Chapter
  • First Online:
Nanocomposite-Based Electronic Tongue

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 259))

  • 465 Accesses

Abstract

In this chapter, the main experimental steps used for synthesis, optimization, characterization, applications of CNTs, and preparation of CNTs-based nanocomposites electrode by drop-casting technique, and electrochemical measurements are discussed in detail. Furthermore, the equipment used to characterize grown CNTs as well as amperometric glucose biosensors are discussed. The mechanism of CNTs growth and glucose detection is also schematically illustrated. All the discussed methods are reproducible within the given experimental limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Treacy, M.M.J., T.W. Ebbesen, and J.M. Gibson. 1996. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature.

    Google Scholar 

  2. Yun, Wang, and John T.W. Yeow. 2009. A review of carbon nanotubes-based gas sensors. Journal of Sensors.

    Google Scholar 

  3. Baughman, Ray H., Anvar A. Zakhidov, and Walt A. de Heer. 2002. Carbon nanotubes—The route toward applications. Science 297 (5582): 787–792.

    Google Scholar 

  4. Mildred, S., Dresselhaus, Gene Dresselhaus, P.C. Eklund, and A.M. Rao. 2000. Carbon nanotubes. Berlin: Springer.

    Google Scholar 

  5. Ming, Su, Bo Zheng, and Jie Liu. 2000. A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chemical Physics Letters 322 (5): 321–326.

    Article  Google Scholar 

  6. Sinha, Niraj, Jiazhi Ma, and John T.W. Yeow. 2006. Carbon nanotube-based sensors. Journal of Nanoscience and Nanotechnology 6 (3): 573–590.

    Article  Google Scholar 

  7. Wisconsin v. Yoder. In US (Supreme Court, 1972), vol. 406, 205.

    Google Scholar 

  8. De Jong, J.T.M., J. Den Das, Ulrich Bathmann, M.H.C. Stoll, Gerhard Kattner, R.F. Nolting, and H.J.W. De Baar. 1998. Dissolved iron at subnanomolar levels in the Southern Ocean as determined by ship-board analysis. Analytica Chimica Acta 377 (2): 113–124.

    Google Scholar 

  9. Ogawa, M.F., Y. Natsume, T. Hirayama, and H. Sakata. 1990. Preparation and electrical properties of undoped zinc oxide films by CVD. Journal of Materials Science Letters 9 (11): 1351–1353.

    Article  Google Scholar 

  10. Jin, Zhong, Haibin Chu, Jinyong Wang, Jinxing Hong, Wenchang Tan, and Yan Li. 2007. Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays. Nano Letters 7 (7): 2073–2079.

    Article  Google Scholar 

  11. Govindaraj, A., and C.N.R. Rao. 2006. Synthesis, growth mechanism and processing of carbon nanotubes. Carbon nanotechnology, 15–51 (Amsterdam: Elsevier).

    Google Scholar 

  12. Miguel A. Correa-Duarte, Nicholas Wagner, José Rojas-Chapana, Christian Morsczeck, Michael Thie, and Michael Giersig. 2004. Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Letters 4 (11): 2233–2236.

    Google Scholar 

  13. Navarro, R.M., M.A. Pena, and J.L.G. Fierro. 2007. Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chemical Reviews 107 (10): 3952–3991.

    Article  Google Scholar 

  14. Hui, Rob, Zhenwei Wang, Olivera Kesler, Lars Rose, Jasna Jankovic, Sing Yick, Radenka Maric, and Dave Ghosh. 2007. Thermal plasma spraying for SOFCs: Applications, potential advantages, and challenges. Journal of Power Sources 170 (2): 308–323.

    Article  Google Scholar 

  15. Cao, Yingli, Aimin Liu, Honghao Li, Yiting Liu, Fen Qiao, Hu Zengquan, and Yongcang Sang. 2011. Fabrication of silicon wafer with ultra low reflectance by chemical etching method. Applied Surface Science 257 (17): 7411–7414.

    Article  Google Scholar 

  16. Xiang, Rong, Erik Einarsson, Jun Okawa, Yuhei Miyauchi, and Shigeo Maruyama. 2009. Acetylene-accelerated alcohol catalytic chemical vapor deposition growth of vertically aligned single-walled carbon nanotubes. The Journal of Physical Chemistry C 113 (18): 7511–7515.

    Article  Google Scholar 

  17. Sreejarani K. Pillai, Suprakas Sinha Ray, and Mathew Moodley. 2008. Purification of multi-walled carbon nanotubes. Journal of nanoscience and nanotechnology 8 (12): 6187–6207.

    Google Scholar 

  18. Zhao, Xin, Xiangli Kong, Yanyan Hua, Bin Feng, and Zongbao Kent Zhao. 2008. Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. European Journal of Lipid Science and Technology 110 (5): 405–412.

    Article  Google Scholar 

  19. Shaibu, A.B., and Byung Rae Cho. 2009. Another view of dual response surface modeling and optimization in robust parameter design. The International Journal of Advanced Manufacturing Technology 41 (7): 631–641.

    Article  Google Scholar 

  20. Bagheri, Samira, Donya Ramimoghadam, Amin TermehYousefi, and Sharifah Bee Abd Hamid. 2015. Effects of synthetic explanatory variable on saturation magnetization of colloidal nanomagnetite slurry. International Journal of Hydrogen Energy 40 (46): 16178–16183.

    Article  Google Scholar 

  21. Ryckaert, Jean-Paul, Giovanni Ciccotti, and Herman J.C. Berendsen. 1977. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics 23 (3): 327–341.

    Article  Google Scholar 

  22. Gilbert D. Nessim. 2010. Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition. Nanoscale 2 (8): 1306–1323.

    Google Scholar 

  23. Fawzi M. Elfghi, and N.A.S. Amin. 2013. Optimization of hydrodesulfurization activity in the hydrotreating process: Canonical analysis and the combined application of factorial design and response surface methodology. Reaction Kinetics, Mechanisms and Catalysis 108 (2): 371–390; Kukovecz, A., D, Mehn, E. Nemes-Nagy, R. Szabo, and I. Kiricsi. 2005. Optimization of CCVD synthesis conditions for single-wall carbon nanotubes by statistical design of experiments (DoE). Carbon 43 (14): 2842–2849.

    Google Scholar 

  24. Mason, Robert L., Richard F. Gunst, and James L. Hess. 2003. Statistical design and analysis of experiments: With applications to engineering and science. New York: Wiley.

    Google Scholar 

  25. Saban, Tanyildizi, M., Dursun Özer, and Murat Elibol. 2005. Optimization of α-amylase production by Bacillus sp. using response surface methodology. Process Biochemistry 40 (7): 2291–2296.

    Google Scholar 

  26. Aslan, N. 2008. Application of response surface methodology and central composite rotatable design for modeling and optimization of a multi-gravity separator for chromite concentration. Powder Technology 185 (1): 80–86.

    Article  Google Scholar 

  27. Rao, A.M., E. Richter, Shunji Bandow, Bruce Chase, P.C. Eklund, K.A. Williams, S. Fang, K.R. Subbaswamy, M. Menon, and A. Thess. 1997. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science. 275 (5297): 187–191.

    Google Scholar 

  28. Murphy, H., P. Papakonstantinou, and T.I.T. Okpalugo. 2006. Raman study of multiwalled carbon nanotubes functionalized with oxygen groups. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 24 (2): 715–720.

    Article  Google Scholar 

  29. McKee, Gregg S.B., and Kenneth S. Vecchio. 2006. Thermogravimetric analysis of synthesis variation effects on CVD generated multiwalled carbon nanotubes. The Journal of Physical Chemistry B 110 (3): 1179–1186.

    Google Scholar 

  30. Hajime, Takano, Jeremy R. Kenseth, Sze-Shun Wong, Janese C. O’Brie, and Marc D. Porter. 1999. Chemical and biochemical analysis using scanning force microscopy. Chemical Reviews 99 (10): 2845–2890.

    Google Scholar 

  31. Pandolfo, A.G., and A.F. Hollenkamp. 2006. Carbon properties and their role in supercapacitors. Journal of Power Sources 157 (1): 11–27.

    Article  Google Scholar 

  32. Daniel H. Murgida, and Peter Hildebrandt. 2008. Disentangling interfacial redox processes of proteins by SERR spectroscopy. Chemical Society Reviews 37 (5): 937–945.

    Google Scholar 

  33. Derek Albert, Long, and D.A. Long. 1977. Raman spectroscopy. New York: McGraw-Hill.

    Google Scholar 

  34. Norman B. Colthup, Lawrence H. Daly, and Stephen E. Wiberley. 1990. Introduction to infrared and Raman spectroscopy. Amsterdam: Elsevier.

    Google Scholar 

  35. Mildred S. Dresselhaus, Gene Dresselhaus, P.C. Eklund, and A.M. Rao. 2000. Carbon nanotubes. Berlin: Springer.

    Google Scholar 

  36. Kotani, Akio, and Shik Shin. 2001. Resonant inelastic x-ray scattering spectra for electrons in solids. Reviews of Modern Physics 73 (1): 203.

    Article  Google Scholar 

  37. Mildred S. Dresselhaus, Gene Dresselhaus, and Peter C. Eklund. 1996. Science of fullerenes and carbon nanotubes: Their properties and applications. Cambridge: Academic press.

    Google Scholar 

  38. Bandyopadhyay, S., G.K. Paul, R. Roy, S.K. Sen, and Suchitra Sen. 2002. Study of structural and electrical properties of grain-boundary modified ZnO films prepared by sol-gel technique. Materials Chemistry and Physics 74 (1): 83–91.

    Article  Google Scholar 

  39. Doyle, C.D. 1961. Kinetic analysis of thermogravimetric data. Journal of Applied Polymer Science 5 (15): 285–292.

    Article  Google Scholar 

  40. Don, Clark, and Alexander Pysik. 2002. The analysis of pharmaceutical substances and formulated products by vibrational spectroscopy. In Handbook of Vibrational Spectroscopy.

    Google Scholar 

  41. Harwalkar, V.R., and C.Y. Ma. 1996. Thermal analysis: Principles and applications. Food proteins: Properties and characterization 405.

    Google Scholar 

  42. Ge, Cuicui, Fang Lao, Wei Li, Yufeng Li, Chunying Chen, Yang Qiu, Xueying Mao, Bai Li, Zhifang Chai, and Yuliang Zhao. 2008. Quantitative analysis of metal impurities in carbon nanotubes: Efficacy of different pretreatment protocols for ICPMS spectroscopy. Analytical Chemistry 80 (24): 9426–9434.

    Article  Google Scholar 

  43. Louis S.K. Pang, John D. Saxby, and S. Peter Chatfield. 1993. Thermogravimetric analysis of carbon nanotubes and nanoparticles. The Journal of Physical Chemistry 97 (27): 6941–6942.

    Google Scholar 

  44. Min, Ouyang, Jin-Lin Huang, and Charles M. Lieber. 2002. Scanning tunneling microscopy studies of the one-dimensional electronic properties of single-walled carbon nanotubes. Annual review of physical chemistry 53 (1): 201–220.

    Google Scholar 

  45. José Miguel, Aguilera, and David W. Stanley. 1999. Microstructural principles of food processing and engineering. Berlin: Springer Science & Business Media.

    Google Scholar 

  46. Jean-Marc Bonard, Kenneth A Dean, Bernard F Coll, and Christian Klinke. 2002. Field emission of individual carbon nanotubes in the scanning electron microscope. Physical Review Letters 89 (19): 197602; Seiler, H. 1983. Secondary electron emission in the scanning electron microscope. Journal of Applied Physics 54 (11): R1–R18.

    Google Scholar 

  47. Mehdi, Shanbedi, Saeed Zeinali Heris, Ahmad Amiri, and Hossein Eshghi. 2015. Synthesis of water-soluble Fe-decorated multi-walled carbon nanotubes: A study on thermo-physical properties of ferromagnetic nanofluid. Journal of the Taiwan Institute of Chemical Engineers.

    Google Scholar 

  48. Wang, Z.L. 2000. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. ACS Publications.

    Google Scholar 

  49. van de Locht, Renée. 2014. On the nanostructure of biogenic and bio-inspired calcium carbonate as studied by electron microscopy techniques. Diss. University of York.

    Google Scholar 

  50. Joseph I. Goldstein, Dale E. Newbury, Patrick Echlin, David C. Joy, Charles Fiori, and Eric Lifshi. 1981. Scanning electron microscopy and X-ray microanalysis. A text for biologists, materials scientists, and geologists. Plenum Publishing Corporation.

    Google Scholar 

  51. Machavaram V Kartikeyan, Edith Borie, and Manfred Thumm. 2013. Gyrotrons: High-power microwave and millimeter wave technology. Berlin: Springer Science & Business Media.

    Google Scholar 

  52. Makovicky, Milota, et al. 1980. Mineralogical, radiographic and uranium leaching studies on the uranium ore from Kvanefjeld, Ilímaussaq Complex, South Greenland.

    Google Scholar 

  53. Reimer, Ludwig, and Helmut Kohl. 2008. Transmission electron microscopy: Physics of image formation. Berlin: Springer.

    Google Scholar 

  54. Tkachenko, Alexander G., Huan Xie, Donna Coleman, Wilhelm Glomm, Joseph Ryan, Miles F. Anderson, Stefan Franzen, and Daniel L. Feldheim. 2003. Multifunctional gold nanoparticle—Peptide complexes for nuclear targeting. Journal of the American Chemical Society 125 (16): 4700–4701.

    Google Scholar 

  55. Stewart, Matthew E., Christopher R. Anderton, Lucas B. Thompson, Joana Maria, Stephen K. Gray, John A. Rogers, and Ralph G. Nuzzo. Nanostructured plasmonic sensors. Chemical Reviews 108 (2): 494–521.

    Google Scholar 

  56. Plunkett, Susan E., James L. Chao, Thomas J. Tague, and Richard A. Palmer. Time-resolved step-scan FT-IR spectroscopy of the photodynamics of carbonmonoxymyoglobin. Applied Spectroscopy 49 (6): 702–708.

    Google Scholar 

  57. Griffiths, Peter R., and James A. De Haseth. 2007. Fourier transform infrared spectrometry. New York: Wiley; Saito, T., K. Matsushige, and K. Tanaka. Chemical treatment and modification of multi-walled carbon nanotubes. Physica B: Condensed Matter 323 (1): 280–283.

    Google Scholar 

  58. Sung, S.L., S.H. Tsai, C.H. Tseng, F.K. Chiang, X.W. Liu, and H.C. Shih. 1999. Well-aligned carbon nitride nanotubes synthesized in anodic alumina by electron cyclotron resonance chemical vapor deposition. Applied Physics Letters 74 (2): 197–199.

    Article  Google Scholar 

  59. Lyons, Michael E. 2008. Carbon nanotube based modified electrode biosensors. Part 1. Electrochemical studies of the flavin group redox kinetics at SWCNT/glucose oxidase composite modified electrodes.

    Google Scholar 

  60. White, L.O., R. Edwards, H.A. Holt, A.M. Lovering, R.G. Finch, and D.S. Reeves. 1988. The in-vitro degradation at 37 C of vancomycin in serum, CAPD fluid and phosphate-buffered saline. Journal of Antimicrobial Chemotherapy 22 (5): 739–745.

    Article  Google Scholar 

  61. Peng, Ru, Wenjing Zhang, Qin Ran, Cong Liang, Li Jing, Siqiu Ye, and Yuezhong Xian. 2011. Magnetically switchable bioelectrocatalytic system based on ferrocene grafted iron oxide nanoparticles. Langmuir 27 (6): 2910–2916.

    Article  Google Scholar 

  62. Nishizawa, M., Y. Miwa, T. Matsue, and I. Uchida. 1993. Surface pretreatment for electrochemical fabrication of ultrathin patterned conducting polymers. Journal of the Electrochemical Society 140 (6): 1650–1655.

    Article  Google Scholar 

  63. TermehYousefi, Amin, Samira Bagheri, Nahrizul Adib Kadri, Mohamad Rusop Mahmood, and Shoichiro Ikeda. 2015. Constant glucose biosensor based on vertically aligned carbon nanotube composites. International Journal of Electrochemical Science 10: 4183–4192.

    Google Scholar 

  64. TermehYousefi, Amin, Katsumi Tateno, Samira Bagheri, and Hirofumi Tanaka. 2017. Development of frequency based taste receptors using bioinspired glucose nanobiosensor. Scientific Reports 7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin TermehYousefi .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

TermehYousefi, A. (2018). Experimental Procedures and Materials. In: Nanocomposite-Based Electronic Tongue. Springer Series in Materials Science, vol 259. Springer, Cham. https://doi.org/10.1007/978-3-319-66848-2_3

Download citation

Publish with us

Policies and ethics