Skip to main content

Introduction

  • Chapter
  • First Online:
Nanocomposite-Based Electronic Tongue

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 259))

  • 465 Accesses

Abstract

Glucose monitoring is one of the main targets of biosensing studies, as 5% of the populations of developed countries are suffering from diabetes . Therefore, an accurate monitoring of the blood glucose level seems to play a major role in the diagnosis and management of diabetes mellitus. Carbon nanotube (CNT) is one of the most promising materials widely used in this area due to its electrical properties. Beside glucose monitoring for diabetes, the biosensors array for the electronic tongue has also become an important area of research. Generally, an electronic tongue is a single or multisensory device dedicated to the automated analysis of complex composition samples and recognizes their characteristic taste properties. This chapter introduces the synthesis method, optimization approach, properties, and electrochemical applications of the CNTs-based glucose biosensor. Furthermore, the significance of the electrochemical glucose biosensor in both medical application and glucose-based electronic tongue is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Challa SSR Kumar. 2007. Nanomaterials for medical diagnosis and therapy. Weinheim: Wiley-VCH.

    Google Scholar 

  2. Desheng Kong, Haotian Wang, Judy J. Cha, Mauro Pasta, Kristie J. Koski, Jie Yao, and Yi Cui. 2013. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano letters 13 (3): 1341–1347.

    Google Scholar 

  3. Hasanzadeh, Mohammad, Nasrin Shadjou, and Miguel de la Guardia. 2015. Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. TrAC Trends in Analytical Chemistry 72: 1–9.

    Article  Google Scholar 

  4. Andrianantoandro, Ernesto, Subhayu Basu, David K. Karig, and Ron Weiss. 2006. Synthetic biology: New engineering rules for an emerging discipline. Molecular Systems Biology 2 (1).

    Google Scholar 

  5. Ochekpe, Nelson A., Patrick O. Olorunfemi, and Ndidi C. Ngwuluka. 2009. Nanotechnology and drug delivery part 2: Nanostructures for drug delivery. Tropical Journal of Pharmaceutical Research 8 (3).

    Google Scholar 

  6. Giljohann, David A. and Chad A. Mirkin. 2009. Drivers of biodiagnostic development. Nature 462 (7272): 461–464.

    Google Scholar 

  7. Baca, Helen K., Carlee Ashley, Eric Carnes, Deanna Lopez, Jeb Flemming, Darren Dunphy, Seema Singh, Zhu Chen, Nanguo Liu, and Hongyou Fan. 2006. Cell-directed assembly of lipid-silica nanostructures providing extended cell viability. Science 313 (5785): 337–341.

    Google Scholar 

  8. Klaus-Joerger, Tanja, Ralph Joerger, Eva Olsson, and Claes-Göran Granqvist. 2001. Bacteria as workers in the living factory: Metal-accumulating bacteria and their potential for materials science. Trends in Biotechnology 19 (1): 15–20.

    Article  Google Scholar 

  9. Fan, Jinxin, Jianquan Luo, Weijie Song, and Yinhua Wan. 2017. One-step purification of α 1-antitrypsin by regulating polyelectrolyte ligands on mussel-inspired membrane adsorber. Journal of Membrane Science 528: 155–162.

    Article  Google Scholar 

  10. Ju, Huangxian, Xueji Zhang, and Joseph Wang. 2011. Nanobiosensing for clinical diagnosis. In NanoBiosensing, 535–567. Springer.

    Google Scholar 

  11. Salata, Oleg V. 2004. Applications of nanoparticles in biology and medicine. Journal of Nanobiotechnology 2 (1): 3.

    Google Scholar 

  12. Ahuja, Tarushee, and Devendra Kumar. 2009. Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sensors and Actuators B: Chemical 136 (1): 275–286.

    Article  Google Scholar 

  13. Wang, Joseph. 2006. Electrochemical biosensors: Towards point-of-care cancer diagnostics. Biosensors & Bioelectronics 21 (10): 1887–1892.

    Article  Google Scholar 

  14. Zhong-Shuai, Wu, Guangmin Zhou, Li-Chang Yin, Wencai Ren, Feng Li, and Hui-Ming Cheng. 2012. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1 (1): 107–131.

    Article  Google Scholar 

  15. Hu, Liangbing, David S. Hecht, and George Gruner. 2010. Carbon nanotube thin films: Fabrication, properties, and applications. Chemical Reviews 110 (10): 5790–5844.

    Google Scholar 

  16. Chronakis, Ioannis S. 2005. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—A review. Journal of Materials Processing Technology 167 (2): 283–293.

    Google Scholar 

  17. Odom, Teri Wang, Jin-Lin Huang, Philip Kim, and Charles M Lieber. 2000. Structure and electronic properties of carbon nanotubes. The Journal of Physical Chemistry B 104 (13): 2794–2809.

    Google Scholar 

  18. Valcárcel, M., S. Cárdenas, and B.M. Simonet. 2007. Role of carbon nanotubes in analytical science. Analytical Chemistry 79 (13): 4788–4797.

    Article  Google Scholar 

  19. Dresselhaus, Mildred S., Gene Dresselhaus, and Peter C. Eklund. 1996. Science of fullerenes and carbon nanotubes: Their properties and applications. Academic press.

    Google Scholar 

  20. Wilder, Jeroen W.G., Liesbeth C. Venema, Andrew G. Rinzler, Richard E. Smalley, and Cees Dekker. 1998. Electronic structure of atomically resolved carbon nanotubes. Nature 391 (6662): 59–62.

    Google Scholar 

  21. Odom, Teri Wang, Jin-Lin Huang, Philip Kim, and Charles M Lieber. 1998. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391 (6662): 62–64.

    Google Scholar 

  22. Ma, Peng-Cheng, Naveed A Siddiqui, Gad Marom, and Jang-Kyo Kim. 2010. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites Part A: Applied Science and Manufacturing 41 (10): 1345–1367.

    Google Scholar 

  23. Prasek, Jan, Jana Drbohlavova, Jana Chomoucka, Jaromir Hubalek, Ondrej Jasek, Vojtech Adam, and Rene Kizek. 2011. Methods for carbon nanotubes synthesis—Review. Journal of Materials Chemistry 21 (40): 15872–15884.

    Article  Google Scholar 

  24. Kwok, Kinghong, and Wilson K.S. Chiu. 2005. Growth of carbon nanotubes by open-air laser-induced chemical vapor deposition. Carbon 43 (2): 437–446.

    Article  Google Scholar 

  25. Cheung, Chin Li, Andrea Kurtz, Hongkun Park, and Charles M Lieber. 2002. Diameter-controlled synthesis of carbon nanotubes. The Journal of Physical Chemistry B 106 (10): 2429–2433.

    Google Scholar 

  26. Kong, Jing, Alan M Cassell, and Hongjie Dai. 1998. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chemical Physics Letters 292 (4): 567–574.

    Google Scholar 

  27. Lee, Cheol-jin and Jae-eun Yoo. 2002. Mass synthesis method of high purity carbon nanotubes vertically aligned over large-size substrate using thermal chemical vapor deposition. Google Patents.

    Google Scholar 

  28. Ciofani, Gianni, Serena Danti, Leonardo Ricotti, Delfo D’Alessandro, Stefania Moscato, Stefano Berrettini, Virgilio Mattoli, and Arianna Menciassi. 2011. Boron nitride nanotubes: Production, properties, biological interactions and potential applications as therapeutic agents in brain diseases. Current Nanoscience 7 (1): 94–109.

    Article  Google Scholar 

  29. Yousefi, Amin Termeh, Shoichiro Ikeda, Mohammad Rusop Mahmood, and Haleh Termeh Yousefi. 2014. Simulation of nano sensor based on carbon nanostructures in order to form multifunctional delivery platforms. Advanced Materials Research 832: 778–782.

    Google Scholar 

  30. Liu, Huaping, Ye Feng, Takeshi Tanaka, Yasuko Urabe, and Hiromichi Kataura. 2010. Diameter-selective metal/semiconductor separation of single-wall carbon nanotubes by agarose gel. The Journal of Physical Chemistry C 114 (20): 9270–9276.

    Article  Google Scholar 

  31. Chen, Jiangyao, Guiying Li, Yong Huang, Haimin Zhang, Huijun Zhao, and Taicheng An. 2012. Optimization synthesis of carbon nanotubes-anatase TiO2 composite photocatalyst by response surface methodology for photocatalytic degradation of gaseous styrene. Applied Catalysis, B: Environmental 123: 69–77.

    Article  Google Scholar 

  32. Pan, Bo, and Baoshan Xing. 2008. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science and Technology 42 (24): 9005–9013.

    Article  Google Scholar 

  33. Kong, Hao, Chao Gao, and Deyue Yan. 2004. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. Journal of the American Chemical Society 126 (2): 412–413.

    Article  Google Scholar 

  34. Rycenga, Matthew, Claire M Cobley, Jie Zeng, Weiyang Li, Christine H Moran, Qiang Zhang, Dong Qin, and Younan Xia. 2011. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chemical Reviews 111 (6): 3669–3712.

    Google Scholar 

  35. Berg, Marc. 2001. Implementing information systems in health care organizations: Myths and challenges. International Journal of Medical Informatics 64 (2): 143–156.

    Article  Google Scholar 

  36. Fan, Yuwei, Brett R. Goldsmith, and Philip G. Collins. 2005. Identifying and counting point defects in carbon nanotubes. Nature Materials 4 (12): 906–911.

    Google Scholar 

  37. Bezerra, Marcos Almeida, Ricardo Erthal Santelli, Eliane Padua Oliveira, Leonardo Silveira Villar, and Luciane Amélia Escaleira. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76 (5): 965–977.

    Google Scholar 

  38. Leonhardt, Albrecht, Silke Hampel, Christian Mueller, Ingolf Moench, Radinka Koseva, Manfred Ritschel, Dieter Elefant, Kati Biedermann, and Bernd Buechner. 2006. Synthesis, properties, and applications of ferromagnetic-filled carbon nanotubes. Chemical Vapor Deposition 12 (6): 380–387.

    Article  Google Scholar 

  39. Hiura, Hidefumi, Thomas W Ebbesen, and Katsumi Tanigaki. 1995. Opening and purification of carbon nanotubes in high yields. Advanced Materials 7 (3): 275–276.

    Google Scholar 

  40. Fenglian, Fu, and Qi Wang. 2011. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management 92 (3): 407–418.

    Google Scholar 

  41. Dabbousi, Bashir O., Javier Rodriguez-Viejo, Frederic V. Mikulec, Jason R. Heine, Hedi Mattoussi, Raymond Ober, Klavs F. Jensen, and Moungi G. Bawendi. 1997. (CdSe) ZnS core—shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. The Journal of Physical Chemistry B 101 (46): 9463–9475.

    Google Scholar 

  42. Liang, Zhou, Liu Jiping, and Li Xiaohe. 2004. Purification of carbon nanotubes. Chemistry 2: 96–102.

    Google Scholar 

  43. Won-Chun, Oh, Weon-Bae Ko, and Feng-Jun Zhang. 2010. The functionalization and preparation methods of carbon nanotube-polymer composites: A review. Elastomers and Composites 45 (2): 80–86.

    Google Scholar 

  44. Shim, Moonsub, Nadine Wong Shi Kam, Robert J. Chen, Yiming Li, and Hongjie Dai. 2002. Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Letters 2 (4): 285–288.

    Google Scholar 

  45. Serp, Philippe and José Luís Figueiredo. 2009. Carbon materials for catalysis. Wiley.

    Google Scholar 

  46. Zhangquan Peng, Allan Hjarbæk Holm, Lasse Tholstrup Nielsen, Steen Uttrup Pedersen, and Kim Daasbjerg. 2008. Covalent sidewall functionalization of carbon nanotubes by a “formation—degradation” approach. Chemistry of Materials 20 (19): 6068–6075.

    Google Scholar 

  47. Holzinger, Michael, Otto Vostrowsky, Andreas Hirsch, Frank Hennrich, Manfred Kappes, Robert Weiss, and Frank Jellen. 2001. Sidewall functionalization of carbon nanotubes. Angewandte Chemie International Edition 40 (21): 4002–4005.

    Article  Google Scholar 

  48. Zen, Jyh‐Myng, Annamalai Senthil Kumar, and Dong‐Mung Tsai. 2003. Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis 15 (13): 1073–1087.

    Google Scholar 

  49. Murray, Royce W., Andrew G. Ewing, and Richard A. Durst. 1987. Chemically modified electrodes molecular design for electroanalysis. Analytical Chemistry 59 (5): 379A–390A.

    Google Scholar 

  50. Barsoukov, Evgenij, and J. Ross Macdonald. 2005. Impedance spectroscopy: Theory, experiment, and applications. Wiley.

    Google Scholar 

  51. Harikumar P.S., and VN Sivasankara Pillai. 1990. Cochin University of Science and Technology.

    Google Scholar 

  52. Li, Yijun, Kunlin Wang, Jinquan Wei, Gu Zhiyi, Zhicheng Wang, Jianbin Luo, and Wu Dehai. 2005. Tensile properties of long aligned double-walled carbon nanotube strands. Carbon 43 (1): 31–35.

    Article  Google Scholar 

  53. Shanmugam, Ranganathan, Palani Barathi, and Annamalai Senthil Kumar. 2014. Engineering aspects.

    Google Scholar 

  54. Malhotra, Bansi D., and Asha Chaubey. 2003. Biosensors for clinical diagnostics industry. Sensors and Actuators B: Chemical 91 (1): 117–127.

    Google Scholar 

  55. Cooper, Jon, and Tony Cass. 2004. Biosensors. Oxford University Press.

    Google Scholar 

  56. Wang, Joseph. 2001. Glucose biosensors: 40 years of advances and challenges. Electroanalysis 13 (12): 983.

    Article  Google Scholar 

  57. Shannon, Mark A., Paul W. Bohn, Menachem Elimelech, John G. Georgiadis, Benito J. Marinas, and Anne M. Mayes. 2008. Science and technology for water purification in the coming decades. Nature 452 (7185): 301–310.

    Google Scholar 

  58. Lin, Yuehe, Lu Fang, Tu Yi, and Zhifeng Ren. 2004. Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Letters 4 (2): 191–195.

    Article  Google Scholar 

  59. Trojanowicz, Marek. 2006. Analytical applications of carbon nanotubes: A review. TrAC Trends in Analytical Chemistry 25 (5): 480–489.

    Article  Google Scholar 

  60. Ji, Qingmin, Suk Bon Yoon, Jonathan P. Hill, Ajayan Vinu, Jong-Sung Yu, and Katsuhiko Ariga. 2009. Layer-by-layer films of dual-pore carbon capsules with designable selectivity of gas adsorption. Journal of the American Chemical Society 131 (12): 4220–4221.

    Google Scholar 

  61. Gruner, G. 2006. Carbon nanotube transistors for biosensing applications. Analytical and Bioanalytical Chemistry 384 (2): 322–335.

    Article  Google Scholar 

  62. Luo, Xi-Liang, Xu Jing-Juan, Jin-Li Wang, and Hong-Yuan Chen. 2005. Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. Chemical Communications 16: 2169–2171.

    Article  Google Scholar 

  63. Neville, Frances, Michael J.F. Broderick, Tim Gibson, and Paul A. Millner. 2010. Fabrication and activity of silicate nanoparticles and nanosilicate-entrapped enzymes using polyethyleneimine as a biomimetic polymer. Langmuir 27 (1): 279–285.

    Google Scholar 

  64. Barsan, Madalina M., Ricardo C. Carvalho, Yu Zhong, Xueliang Sun, and Christopher Brett. 2012. Carbon nanotube modified carbon cloth electrodes: Characterisation and application as biosensors. Electrochimica Acta 85: 203–209.

    Google Scholar 

  65. Zhu, Zhigang, Luis Garcia-Gancedo, Andrew J. Flewitt, Huaqing Xie, Francis Moussy, and William I Milne. 2012. A critical review of glucose biosensors based on carbon nanomaterials: Carbon nanotubes and graphene. Sensors 12 (5): 5996–6022.

    Google Scholar 

  66. Joshi Shashank, R., A.K. Das, V.J. Vijay, and V. Mohan. 2008. Challenges in diabetes care in India: Sheer numbers, lack of awareness and inadequate control. Journal of Association of Physicians of India 56 (6): 443–450.

    Google Scholar 

  67. Telediab, Sea. 2005. Glucosim: Educational software for diabetes and simulation of glucose dynamics in blood. Diabetes Technology & Therapeutics 7 (2).

    Google Scholar 

  68. Barraud, Antoine. 2009. Molecular selective interface for an implantable glucose sensor based on the viscosity variation of a sensitive fluid containing Dextran and Concanavalin A.

    Google Scholar 

  69. Md Mahbubur Rahman, AJ Ahammad, Joon-Hyung Jin, Sang Jung Ahn, and Jae-Joon Lee. 2010. A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10 (5): 4855–4886.

    Google Scholar 

  70. Singh, Ravi, Davide Pantarotto, David McCarthy, Olivier Chaloin, Johan Hoebeke, Charalambos D Partidos, Jean-Paul Briand, Maurizio Prato, Alberto Bianco, and Kostas Kostarelos. 2005. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: Toward the construction of nanotube-based gene delivery vectors. Journal of the American Chemical Society 127 (12): 4388–4396.

    Google Scholar 

  71. Beitollahi, Hadi, Mohammad Ali Taher, and Nasrin Keshtkar. 2014. Voltammetric determination of L-Dopa in the presence of Tryptophan using a modified carbon nanotubes paste electrode. Sensor Letters 12 (1): 183–190.

    Google Scholar 

  72. Krajcik, Rasti, Adrian Jung, Andreas Hirsch, Winfried Neuhuber, and Oliver Zolk. 2008. Functionalization of carbon nanotubes enables non-covalent binding and intracellular delivery of small interfering RNA for efficient knock-down of genes. Biochemical and Biophysical Research Communications 369 (2): 595–602.

    Article  Google Scholar 

  73. Sutcliffe, Alistair. 2003. Multimedia and virtual reality: Designing multisensory user interfaces. Psychology Press.

    Google Scholar 

  74. Merkoçi, Arben, Martin Pumera, Xavier Llopis, Briza Pérez, Manel del Valle, and Salvador Alegret. 2005. New materials for electrochemical sensing VI: Carbon nanotubes. TrAC Trends in Analytical Chemistry 24 (9): 826–838.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin TermehYousefi .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

TermehYousefi, A. (2018). Introduction. In: Nanocomposite-Based Electronic Tongue. Springer Series in Materials Science, vol 259. Springer, Cham. https://doi.org/10.1007/978-3-319-66848-2_1

Download citation

Publish with us

Policies and ethics