Skip to main content

Matrix Product Ansatz for Non-equilibrium Quantum Steady States

  • Conference paper
  • First Online:
Book cover From Particle Systems to Partial Differential Equations (PSPDE 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 209))

Included in the following conference series:

Abstract

We present a general construction of matrix product states for stationary density matrices of one-dimensional quantum spin systems kept out of equilibrium through boundary Lindblad dynamics. As an application we review the isotropic Heisenberg quantum spin chain which is closely related to the generator of the simple symmetric exclusion process. Exact and heuristic results as well as numerical evidence suggest a local quantum equilibrium and long-range correlations reminiscent of similar large-scale properties in classical stochastic interacting particle systems that can be understood in terms of fluctuating hydrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Due to the quantum mechanical phenomenon of entanglement, a quantum subsystem that has interacted with its environment in the past (until some time \(t_0\)) cannot be considered isolated for \(t \ge t_0\) even when there are no interactions from \(t_0\) onwards.

  2. 2.

    Following quantum mechanical convention we use the short hand \(|\,{\cdot }\,\rangle \langle \,{\cdot }\,| \equiv |\,{\cdot }\,\rangle \otimes \langle \,{\cdot }\,|\) for the Kronecker product \(\otimes \) of a state vector \(|\,{\cdot }\,\rangle \in \mathfrak {H}\) and some dual state vector \(\langle \,{\cdot }\,| \in \mathfrak {H}^*\). We stress that by the rules of tensor calculus one has \(\langle \,{\varPsi }\,|\otimes |\,{\varPhi }\,\rangle = |\,{\varPsi }\,\rangle \otimes \langle \,{\varPhi }\,| \equiv |\,{\varPsi }\,\rangle \langle \,{\varPhi }\,|\) but \(\langle \,{\varPsi }\,|\otimes |\,{\varPhi }\,\rangle \ne \langle \,{\varPsi }\,|\,{\varPhi }\,\rangle \) since \(\langle \,{\varPsi }\,|\,{\varPhi }\,\rangle \) represents the scalar product.

  3. 3.

    For this scenario, which we have in mind for applications, one often calls \(\rho \) the reduced density matrix, but we shall refrain doing so here.

  4. 4.

    M is not uniquely defined. For a given M and arbitrary unitary U the product MU gives the same \(\rho \). This non-uniqueness seems to be exactly the point that makes M easier to treat than \(\rho \).

References

  1. Alcaraz, F.C., Dasmahapatra, S., Rittenberg, V.: N-species stochastic models with boundaries and quadratic algebras. Phys. A 257, 1 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Attal, S., Joye, A., Pillet, C.-A. (eds.): Open Quantum Systems II. The Markovian Approach. Springer, Berlin (2006)

    Google Scholar 

  3. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic, New York (1982)

    MATH  Google Scholar 

  4. Bertini, L., De Sole, A., Gabrielli, D., Jona Lasinio, G., Landim, C.: Macroscopic fluctuation theory for stationary non-equilibrium states. J. Stat. Phys. 107, 635–675 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertini, L., De Sole, A., Gabrielli, D., Jona Lasinio, G., Landim, C.: Macroscopic fluctuation theory. Rev. Mod. Phys. 87, 593–636 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blythe, R.A., Evans, M.R.: Nonequilibrium steady states of matrix-product form: a solver’s guide. J. Phys. A: Math. Theor. 40, R333–R441 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  8. Buča, B., Prosen, T.: Connected correlations, fluctuations and current of magnetization in the steady state of boundary driven XXZ spin chains. J. Stat. Mech. 023102 (2016)

    Google Scholar 

  9. Derrida, B.: An exactly soluble non-equilibrium system: the asymmetric simple exclusion process. Phys. Rep. 301, 65–83 (1998)

    Article  MathSciNet  Google Scholar 

  10. Derrida, B., Lebowitz, J.L., Speer, E.R.: Large deviation of the density profile in the steady state of the open symmetric simple exclusion process. J. Stat. Phys. 107, 599–634 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frigerio, A., Spohn, H.: Stationary states of quantum dynamical semigroups and applications. In: Accardi, L., Gorini, V., Paravicini, G. (eds.) Proceedings of Mathematical Problems in the Theory of Quantum Irreversible Processes, Laboratoria di Cibernetica del CNR, pp. 115–135 (1978)

    Google Scholar 

  12. Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17(5), 821–825 (1976)

    Article  MathSciNet  Google Scholar 

  13. Heisenberg, W.: Zur Theorie des Ferromagnetismus. Z. Phys. 49, 619–636 (1928)

    Article  MATH  Google Scholar 

  14. Ilievski, E., Prosen, T.: Exact steady state manifold of a boundary driven spin-1 Lai-Sutherland chain. Nucl. Phys. B 882, 485 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31, 253–258 (1925)

    Article  Google Scholar 

  16. Karevski, D., Popkov, V., Schütz, G.M.: Exact matrix product solution for the boundary-driven Lindblad XXZ chain. Phys. Rev. Lett. 110, 047201 (2013)

    Article  Google Scholar 

  17. Karevski, D., Popkov, V., Schütz, G.M.: Driven isotropic Heisenberg spin chain with arbitrary boundary twisting angle: exact results. Phys. Rev. E 88, 062118 (2013)

    Article  Google Scholar 

  18. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  19. Kossakowski, A.: On quantum statistical mechanics of non-Hamiltonian systems. Rep. Math. Phys. 3(4), 247–274 (1972)

    Article  MathSciNet  Google Scholar 

  20. Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  21. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  22. Polishchuk, A., Positselski, L.: Quadratic Algebras. University Lecture Series, vol. 37. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  23. Popkov, V., Livi, R.: Manipulating energy and spin currents in non-equilibrium systems of interacting qubits. New J. Phys. 15, 023030 (2013)

    Article  MathSciNet  Google Scholar 

  24. Popkov, V., Prosen, T.: Infinitely dimensional Lax structure for one-dimensional Hubbard model. Phys. Rev. Lett. 114, 127201 (2015)

    Article  Google Scholar 

  25. Popkov, V., Schütz, G.M.: Solution of the Lindblad equation for spin helix states. Phys. Rev. E 95, 042128 (2017)

    Google Scholar 

  26. Prosen, T.: Open XXZ spin chain: nonequilibrium steady state and a strict bound on Ballistic transport. Phys. Rev. Lett. 106, 217206 (2011)

    Article  Google Scholar 

  27. Prosen, T.: Exact nonequilibrium steady state of a strongly driven open XXZ chain. Phys. Rev. Lett. 107, 137201 (2011)

    Article  Google Scholar 

  28. Prosen, T.: Exact nonequilibrium steady state of an open Hubbard chain. Phys. Rev. Lett. 112, 030603 (2014)

    Article  Google Scholar 

  29. Prosen, T.: Matrix product solutions of boundary driven quantum chains. J. Phys. A: Math. Theor. 48, 373001 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schütz, G.M.: Exactly solvable models for many-body systems far from equilibrium. In: Domb, C., Lebowitz, J. (eds.) Phase Transitions and Critical Phenomena, vol. 19, pp. 1–251. Academic Press, London (2001)

    Chapter  Google Scholar 

  31. Spohn, H.: Long-range correlations for stochastic lattice gases in a non-equilibrium steady state. J. Phys. A: Math. Gen. 16, 4275–4291 (1983)

    Article  Google Scholar 

  32. Spohn, H.: Nonlinear fluctuating hydrodynamics for anharmonic chains. J. Stat. Phys. 154, 1191–1227 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

VP and GMS thank T. Prosen for useful discussions and DFG for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Schütz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karevski, D., Popkov, V., Schütz, G.M. (2017). Matrix Product Ansatz for Non-equilibrium Quantum Steady States. In: Gonçalves, P., Soares, A. (eds) From Particle Systems to Partial Differential Equations. PSPDE 2015. Springer Proceedings in Mathematics & Statistics, vol 209. Springer, Cham. https://doi.org/10.1007/978-3-319-66839-0_11

Download citation

Publish with us

Policies and ethics