Recently an order induced by t-norms, uninorms and nullnorms have been investigated. This paper is mainly devoted to defining and investigating the set of incomparable elements with respect to the order induced by a uninorm. Also, by defining such an order, an equivalence relation on the class of uninorms is defined and this equivalence is deeply investigated.


  1. 1.
    Aşıcı, E.: An order induced by nullnorms and its properties. Fuzzy Sets Syst. (in press). doi: 10.1016/j.fss.2016.12.004
  2. 2.
    Aşıcı, E., Karaçal, F.: On the \(T\)-partial order and properties. Inf. Sci. 267, 323–333 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aşıcı, E., Karaçal, F.: Incomparability with respect to the triangular order. Kybernetika 52, 15–27 (2016)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence (1967)zbMATHGoogle Scholar
  5. 5.
    Calvo, T., De Baets, B., Fodor, J.: The functional equations of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets Syst. 120, 385–394 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Casasnovas, J., Mayor, G.: Discrete t-norms and operations on extended multisets. Fuzzy Sets Syst. 159, 1165–1177 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    De Baets, B., Mesiar, R.: Triangular norms on product lattices. Fuzzy Sets Syst. 104, 61–75 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    De Baets, B., Mesiar, R.: Triangular norms on the real unit square. In: Proceedings of the 1999 EUSFLAT-ESTYLF Joint Conference, Palma de Mallorca, Spain, pp. 351–354 (1999)Google Scholar
  9. 9.
    Çaylı, G.D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices. Inf. Sci. 367–368, 221–231 (2016)CrossRefGoogle Scholar
  10. 10.
    Çaylı, G.D., KaraÇal, F.: Construction of uninorms on bounded lattices. Kybernetika 53, 394–417 (2017)Google Scholar
  11. 11.
    Çaylı, G.D.: On a new class of t-norms and t-conorms on bounded lattices. Fuzzy Sets Syst. (in press) doi: 10.1016/j.fss.2017.07.015
  12. 12.
    Drewniak, J., Drygaś, P., Rak, E.: Distributivity between uninorms and nullnorms. Fuzzy Sets Syst. 159, 1646–1657 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Drygaś, P., Rak, E.: Distributivity equation in the class of 2-uninorms. Fuzzy Sets Syst. 291, 82–97 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dubois, D., Prade, H.: Fundamentals of Fuzzy Sets. Kluwer Acad. Publ., Boston (2000)CrossRefzbMATHGoogle Scholar
  15. 15.
    Ertuğrul, U., Kesicioğlu, M.N., Karaçal, F.: Ordering based on uninorms. Inf. Sci. 330, 315–327 (2016)CrossRefGoogle Scholar
  16. 16.
    Fodor, J.C., Yager, R.R., Rybalov, A.: Structure of uninorms. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 5, 411–427 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gottwald, S.: A Treatise on Many-Valued Logic. Studies in Logic and Computation. Research Studies Press, Baldock (2001)zbMATHGoogle Scholar
  18. 18.
    Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  19. 19.
    Karaçal, F., Aşıcı, E.: Some notes on T-partial order. J. Inequal. Appl. 2013, 219 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Karaçal, F., Kesicioğlu, M.N.: A T-partial order obtained from t-norms. Kybernetika 47, 300–314 (2011)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets Syst. 261, 33–43 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000)CrossRefzbMATHGoogle Scholar
  23. 23.
    Liang, X., Pedrycz, W.: Logic-based fuzzy networks: a study in system modeling with triangular norms and uninorms. Fuzzy Sets Syst. 160, 3475–3502 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Maes, K.C., Mesiarova-Zemankova, A.: Cancellativity properties for t-norms and t-subnorms. Inf. Sci. 179, 135–150 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Martin, J., Mayor, G., Torrens, J.: On locally internal monotonic operations. Fuzzy Sets Syst. 137, 27–42 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Mas, M., Mayor, G., Torrens, J.: The distributivity condition for uninorms and t-operators. Fuzzy Sets Syst. 128, 209–225 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Mitsch, H.: A natural partial order for semigroups. Proc. Am. Math. Soc. 97, 384–388 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Saminger, S.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 157, 1403–1413 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Yager, R.R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80, 111–120 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Yager, R.R.: Uninorms in fuzzy system modeling. Fuzzy Sets Syst. 122, 167–175 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Yager, R.R.: Aggregation operators and fuzzy systems modelling. Fuzzy Sets Syst. 67, 129–145 (1994)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Software Engineering, Faculty of TechnologyKaradeniz Technical UniversityTrabzonTurkey

Personalised recommendations