Fuzzy Logic Load Balancing for Cloud Architecture Network - A Simulation Test

  • Łukasz ApiecionekEmail author
  • Jacek M. Czerniak
  • Wojciech Dobrosielski
  • Dawid Ewald
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 641)


This article presents the algorithm of resource usage optimization for highly complex computer system architectures, such as Cloud Computing solutions. The main problem of such solutions is predicting the resources usage for allocating and dismissal. The proposed algorithm, based on OFN, allows to recognize the trend in the processed requests by the servers. In effect, the CC solutions allow to add resources dynamically, according to the amount of connections, and manage them in real time. This article proposes a fuzzy logic load balancing method for highly complex system architecture, which makes possible to use the resources in more efficient way. Description of the proposed algorithm is followed by simulation test results.


Cloud Computing Complex architecture Fuzzy logic 


  1. 1.
    Alliance, C.S.: Top threats to cloud computing v1. 0 (2010).
  2. 2.
    Apiecionek, L., Czerniak, J., Dobrosielski, W.: Quality of services method as a DDoS protection tool. In: Advances in Intelligent Systems and Computing, pp. 225–234. Springer, New York (2015)Google Scholar
  3. 3.
    Apiecionek, L., Czerniak, J.M.: QoS solution for network resource protection. In: Proceedings of the Twelfth International Conference on Informatics, Informatics 2013, pp. 73–76 (2013)Google Scholar
  4. 4.
    Apiecionek, L., Czerniak, J.M., Dobrosielski, W.T.: Quality of services method as a DDoS protection tool. In: Intelligent Systems 2014, Vol. 2: Tools, Architectures, Systems, Applications, vol. 323, 225–234 (2015)Google Scholar
  5. 5.
    Apiecionek, L., Czerniak, J.M., Ewald, D.: New QoS Concept for Protecting Network Resources, pp. 234–239. Springer International Publishing, Cham (2017)Google Scholar
  6. 6.
    Apiecionek, L., Czerniak, J.M., Zarzycki, H.: Protection tool for distributed denial of services attack. Beyond Databases, Archit. Struct., BDAS 424, 405–414 (2014)CrossRefGoogle Scholar
  7. 7.
    Apiecionek, Ł., Sobczak, M., Makowski, W., Vince, T.: Multi path transmission control protocols as a security solution. In: 2015 IEEE 13th International Scientific Conference on Informatics, pp. 27–31. IEEE (2015)Google Scholar
  8. 8.
    Apiecionek, M., et al.: Biblioteka przy parafii pw. świętych polskich braci męczenników w bydgoszczy. Fides. Biuletyn Bibliotek Kościelnych 21(41(2)), 73–80 (2015)Google Scholar
  9. 9.
    Czerniak, J., Ewald, D., Macko, M., Smigielski, G., Tyszczuk, K.: Approach to the monitoring of energy consumption in Eco-grinder based on ABC optimization. Beyond Databases Archit. Struct. BDAS 521, 516–529 (2015)Google Scholar
  10. 10.
    Czerniak, J.: Evolutionary approach to data discretization for rough sets theory. Fundamenta Informaticae 92(1–2), 43–61 (2009)MathSciNetGoogle Scholar
  11. 11.
    Czerniak, J.M., Dobrosielski, W., Zarzycki, H., Apiecionek, L.: A proposal of the new owlANT method for determining the distance between terms in ontology. Intelligent Systems 2014, Vol. 2: Tools, Architectures, Systems, Applications, vol. 323, 235–246 (2015)Google Scholar
  12. 12.
    Czerniak, J.M., Dobrosielski, W.T., Apiecionek, Ł., Ewald, D., Paprzycki, M.: Practical application of OFN arithmetics in a crisis control center monitoring, pp. 51–64. Springer International Publishing, Cham (2016)Google Scholar
  13. 13.
    Czerniak, J.M., Ewald, D., Śmigielski, G., Dobrosielski, W.T., Apiecionek, Ł.: Optimization of fuel consumption in firefighting water capsule Flights of a Helicopter, pp. 39–49. Springer International Publishing, Cham (2016)Google Scholar
  14. 14.
    Czerniak, J.M., Zarzycki, H.: Artificial acari optimization as a new strategy for global optimization of multimodal functions. J. Comput. Sci. 348, 1–22 (2017)Google Scholar
  15. 15.
    Czerniak, J.M., Zarzycki, H., Ewald, D.: AAO as a new strategy in modeling and simulation of constructional problems optimization. In: Simulation Modelling Practice and Theory (2017).
  16. 16.
    Czerniak, J., Apiecionek, Ł., Zarzycki, H., Ewald, D.: Proposed CAEva simulation method for evacuation of people from a buildings on fire. Adv. Intell. Syst. Comput. 401, 315–326 (2016)Google Scholar
  17. 17.
    Czerniak, J., Dobrosielski, W., Apiecionek, L.: Representation of a trend in OFN during fuzzy observance of the water level from the crisis control center. In: Proceedings of the Federated Conference on Computer Science and Information Systems, IEEE Digital Library, ACSIS, vol. 5, pp. 443-447 (2015)Google Scholar
  18. 18.
    Czerniak, J., Macko, M., Ewald, D.: The cutmag as a new hybrid method for multi-edge grinder design optimization. Adv. Intell. Syst. Comput. 401, 327–337 (2016)Google Scholar
  19. 19.
    Czerniak, J., Smigielski, G., Ewald, D., Paprzycki, M.: New proposed implementation of ABC method to optimization of water capsule flight. In: Proceedings of the Federated Conference on Computer Science and Information Systems, IEEE Digital Library, ACSIS, vol. 5, pp. 489-493 (2015)Google Scholar
  20. 20.
    Ewald, D., Czerniak, J.M., Zarzycki, H.: Approach to solve a criteria problem of the ABC algorithm used to the WBDP multicriteria optimization. In: Intelligent Systems 2014, Vol. 1: Mathematical Foundations, Theory, Analyses, vol. 322, pp. 129–137 (2015)Google Scholar
  21. 21.
    Horrigan, J.B.: Cloud computing gains in currency (2008).
  22. 22.
    Kosinski, W., Prokopowicz, P., Rosa, A.: Defuzzification functionals of ordered fuzzy numbers. IEEE Trans. Fuzzy Syst. 21(6), 1163–1169 (2013)CrossRefGoogle Scholar
  23. 23.
    Kozik, R., Choraś, M., Hołubowicz, W.: Packets tokenization methods for web layer cyber security. Logic J. IGPL 25(1), 103–113 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kozik, R., Choraś, M., Renk, R., Hołubowicz, W.: Cyber security of the application layer of mission critical industrial systems. In: IFIP International Conference on Computer Information Systems and Industrial Management, pp. 342–351. Springer, New York (2016)Google Scholar
  25. 25.
    Mace, J.C., Van Moorsel, A., Watson, P.: The case for dynamic security solutions in public cloud workflow deployments. In: 2011 IEEE/IFIP 41st International Conference on Dependable Systems and Networks Workshops, pp. 111–116. IEEE (2011)Google Scholar
  26. 26.
    Macko, M., Flizikowski, J.: The method of the selection of comminution design for non-brittle materials. In: AIChE Annual Meeting, Conference Proceedings (2010)Google Scholar
  27. 27.
    Macko, M., Flizikowski, J., Szczepański, Z., Tyszczuk, K., Śmigielski, G., Mroziński, A., Czerniak, J., Tomporowski, A.: CAD/CAE Applications in Mill’s Design and Investigation, pp. 343–351. Springer International Publishing, Cham (2017)Google Scholar
  28. 28.
    Palka, R., Makowski, W., Wozniak, M., Brazkiewicz, P., Wosinski, K., Baturo, P., Terlecki, M., Gromacki, T.: QoS mechanism for low speed radio networks-case study. In: International Conference on Image Processing and Communications, pp. 240–246. Springer, New York (2016)Google Scholar
  29. 29.
    Pearson, S.: Toward accountability in the cloud. IEEE Internet Comput. 15(4), 64–69 (2011)CrossRefGoogle Scholar
  30. 30.
    Sharma, P.D.: A classification of distinct vulnerabilities in cloud computing. World J. Sci. Technol. 2, 103 (2012)Google Scholar
  31. 31.
    Subashini, S., Kavitha, V.: A survey on security issues in service delivery models of cloud computing. J. Netw. Comput. Appl. 34(1), 1–11 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Łukasz Apiecionek
    • 1
    Email author
  • Jacek M. Czerniak
    • 1
  • Wojciech Dobrosielski
    • 1
  • Dawid Ewald
    • 1
  1. 1.Institute of TechnologyCasimir the Great University in BydgoszczBydgoszczPoland

Personalised recommendations