Advertisement

Measuring the Incoherent Information in Multi-adjoint Normal Logic Programs

  • M. Eugenia CornejoEmail author
  • David Lobo
  • Jesús Medina
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 641)

Abstract

Databases usually contain incoherent information due to, for instance, the presence of noise in the data. The detection of the incoherent information is an important challenge in different topics. In this paper, we will consider a formal notion for this kind of information and we will study different measures in order to detect incoherent information in a general fuzzy logic programming framework. As a consequence, we can highlight some irregular data in a multi-adjoint normal logic program and so, in other useful and more particular frameworks.

Keywords

Multi-adjoint normal logic program Coherence interpretation Incoherence measure 

References

  1. 1.
    Besold, T.R., Garcez, A.D., Stenning, K., van der Torre, L., van Lambalgen, M.: Reasoning in non-probabilistic uncertainty: logic programming and neural-symbolic computing as examples. Mind. Mach. 27(1), 37–77 (2017)CrossRefGoogle Scholar
  2. 2.
    Bouttier, J., Francesco, P.D., Guitter, E.: Geodesic distance in planar graphs. Nucl. Phys. B 663(3), 535–567 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cornejo, M.E., Lobo, D., Medina, J.: Selecting the coherence notion in multi-adjoint normal logic programming. In: Rojas, I., Joya, G., Catala, A. (eds.) Advances in Computational Intelligence. Lecture Notes in Computer Science, vol. 10305, pp. 1–11. Springer, Cham (2017)CrossRefGoogle Scholar
  4. 4.
    Cornejo, M.E., Lobo, D., Medina, J.: Towards multi-adjoint logic programming with negations. In: Koczy, L., Medina, J. (eds.) 8th European Symposium on Computational Intelligence and Mathematics (ESCIM 2016), pp. 24–29 (2016)Google Scholar
  5. 5.
    Damásio, C.V., Pereira, L.M.: Hybrid probabilistic logic programs as residuated logic programs. In: Logics in Artificial Intelligence, JELIA 2000. Lecture Notes in Artificial Intelligence, vol. 1919, pp. 57–73 (2000)Google Scholar
  6. 6.
    Damásio, C.V., Pereira, L.M.: Monotonic and residuated logic programs. In: Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2001. Lecture Notes in Artificial Intelligence, vol. 2143, pp. 748–759 (2001)Google Scholar
  7. 7.
    Dubois, D., Lang, J., Prade, H.: Automated reasoning using possibilistic logic: semantics, belief revision, and variable certainty weights. IEEE Trans. Knowl. Data Eng. 6(1), 64–71 (1994)CrossRefGoogle Scholar
  8. 8.
    Farahani, R.Z., Miandoabchi, E.: Graph Theory for Operations Research and Management: Applications in Industrial Engineering. IGI Global, London (2013)CrossRefGoogle Scholar
  9. 9.
    Fitting, M.: Bilattices and the semantics of logic programming. J. Log. Program. 11(2), 91–116 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Galanaki, C., Nomikos, C., Rondogiannis, P.: Game semantics for non-monotonic intensional logic programming. Ann. Pure Appl. Log. 168(2), 234–253 (2017). Eighth Games for Logic and Programming Languages Workshop (GaLoP)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP/SLP, vol. 88, pp. 1070–1080 (1988)Google Scholar
  12. 12.
    Jalili, M.: Graph theoretical analysis of Alzheimer’s disease: discrimination of AD patients from healthy subjects. Inf. Sci. 384, 145–156 (2017)CrossRefGoogle Scholar
  13. 13.
    Julian, P., Moreno, G., Penabad, J.: On fuzzy unfolding: a multi-adjoint approach. Fuzzy Sets Syst. 154(1), 16–33 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Julian, P., Moreno, G., Penabad, J.: An improved reductant calculus using fuzzy partial evaluation techniques. Fuzzy Sets Syst. 160, 162–181 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Julián-Iranzo, P., Medina, J., Ojeda-Aciego, M.: On reductants in the framework of multi-adjoint logic programming. Fuzzy Sets Syst. 317, 27–43 (2017). Theme: Logic and Computer ScienceMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Julián-Iranzo, P., Rubio-Manzano, C.: A sound and complete semantics for a similarity-based logic programming language. Fuzzy Sets Syst. 317, 1–26 (2017). Theme: Logic and Computer ScienceMathSciNetCrossRefGoogle Scholar
  17. 17.
    Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming and its applications. J. Log. Program. 12, 335–367 (1992)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Madrid, N., Ojeda-Aciego, M.: On coherence and consistence in fuzzy answer set semantics for residuated logic programs. In: Di Gesù, V., Pal, S.K., Petrosino, A. (eds.) Fuzzy Logic and Applications. Lecture Notes in Computer Science, vol. 5571, pp. 60–67. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Madrid, N., Ojeda-Aciego, M.: On the measure of incoherence in extended residuated logic programs. In: Proceedings of IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2009, Jeju Island, Korea, 20–24 August 2009, pp. 598–603 (2009)Google Scholar
  20. 20.
    Madrid, N., Ojeda-Aciego, M.: Measuring instability in normal residuated logic programs: adding information. In: Proceedings of IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2010, Barcelona, Spain, 18–23 July 2010, pp. 1–7 (2010)Google Scholar
  21. 21.
    Madrid, N., Ojeda-Aciego, M.: Measuring instability in normal residuated logic programs: discarding information. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Methods - Prceedings of 13th International Conference, IPMU 2010, Dortmund, Germany, 28 June–2 July 2010, Part I, pp. 128–137 (2010)Google Scholar
  22. 22.
    Madrid, N., Ojeda-Aciego, M.: Measuring inconsistency in fuzzy answer set semantics. IEEE Trans. Fuzzy Syst. 19(4), 605–622 (2011)CrossRefGoogle Scholar
  23. 23.
    Madrid, N., Ojeda-Aciego, M.: On the existence and unicity of stable models in normal residuated logic programs. Int. J. Comput. Math. 89(3), 310–324 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Madrid, N., Ojeda-Aciego, M.: On the measure of incoherent information in extended multi-adjoint logic programs. In: 2013 IEEE Symposium on Foundations of Computational Intelligence (FOCI). Institute of Electrical and Electronics Engineers (IEEE), April 2013Google Scholar
  25. 25.
    Medina, J., Ojeda-Aciego, M.: Multi-adjoint t-concept lattices. Inf. Sci. 180(5), 712–725 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Multi-adjoint logic programming with continuous semantics. In: Logic Programming and Non-Monotonic Reasoning, LPNMR 2001, pp. 351–364. Lecture Notes in Artificial Intelligence, vol. 2173 (2001)Google Scholar
  27. 27.
    Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based unification: a multi-adjoint approach. Fuzzy Sets Syst. 146, 43–62 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Nieuwenborgh, D.V., Cock, M.D., Vermeir, D.: An introduction to fuzzy answer set programming. Ann. Math. Artif. Intell. 50(3–4), 363–388 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Riguzzi, F., Bellodi, E., Zese, R., Cota, G., Lamma, E.: A survey of lifted inference approaches for probabilistic logic programming under the distribution semantics. Int. J. Approx. Reason. 80, 313–333 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Strass, H., Muñoz-Hernández, S., Pablos-Ceruelo, V.: Operational semantics for a fuzzy logic programming system with defaults and constructive answers (2009)Google Scholar
  31. 31.
    Trillas, E., Alsina, C., Jacas, J.: On contradiction in fuzzy logic. Soft Comput. Fusion Found. Methodol. Appl. 3(4), 197–199 (1999)Google Scholar
  32. 32.
    Vojtáš, P.: Fuzzy logic programming. Fuzzy Sets Syst. 124(3), 361–370 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Yu, X., Xu, Z.: Graph-based multi-agent decision making. Int. J. Approx. Reason. 53(4), 502–512 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • M. Eugenia Cornejo
    • 1
    Email author
  • David Lobo
    • 1
  • Jesús Medina
    • 1
  1. 1.Department of MathematicsUniversity of CádizCádizSpain

Personalised recommendations