Advertisement

Crisp vs. Fuzzy Data in Multicriteria Decision Making: The Case of the VIKOR Method

  • Blanca Ceballos
  • María T. Lamata
  • David A. PeltaEmail author
  • Ronald R. Yager
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 641)

Abstract

In this contribution we want to shed light onto the following research question: in the context of multicriteria decision making problem, does the nature of the information available (either crisp or fuzzy) has any impact in the ranking of the alternatives? We explore this situation using randomly generated decision problems and the VIKOR method as an example.

Keywords

MCDM VIKOR Fuzzy data Crisp data 

Notes

Acknowledgements

This work is partially supported by projects TIN2014-55024-P from the Spanish Ministry of Science and Innovation and P11-TIC-8001 from Junta de Andaluca (both including FEDER funds, from the European Union).

References

  1. 1.
    Ceballos, B., Lamata, M.T., Pelta, D.A.: A comparative analysis of multi-criteria decision-making methods. Prog. Artif. Intell. 5(4), 315–322 (2016)CrossRefGoogle Scholar
  2. 2.
    Ceballos, B., Lamata, M.T., Pelta, D.A.: Fuzzy multicriteria decision-making methods: a comparative analysis. Int. J. Intell. Syst. 32(7), 663–753 (2017)CrossRefGoogle Scholar
  3. 3.
    The comprehensive R archive network (2017). https://cran.r-project.org/
  4. 4.
    Dubois, D., Prade, H.: Fuzzy numbers: an overview. In: Bezdek, J. (ed.) Analysis of Fuzzy Information, vol. 2, pp. 3–39. CRC Press, Boca Raton (1988)Google Scholar
  5. 5.
    FuzzyMCDM: Multi-criteria decision making methods for fuzzy data (2017). https://cran.r-project.org/package=FuzzyMCDM
  6. 6.
    Greco, S., Ehrgott, M., Figueira, J.R. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, International Series in Operations Research & Management Science, vol. 233. Springer, New York (2016)Google Scholar
  7. 7.
    Kahraman, C., Onar, S.C., Oztaysi, B.: Fuzzy multicriteria decision-making: a literature review. Int. J. Comput. Intell. Syst. 8(4), 637–666 (2015)CrossRefzbMATHGoogle Scholar
  8. 8.
    MCDM: Multi-criteria decision making methods for crisp data (2017). https://cran.r-project.org/package=MCDM
  9. 9.
    Opricovic, S.: Multicriteria Optimization of Civil Engineering Systems. Faculty of Civil Engineering, Belgrade (1998)Google Scholar
  10. 10.
    Opricovic, S.: Fuzzy vikor with an application to water resources planning. Expert Syst. Appli. 38(10), 12983–12990 (2011)CrossRefGoogle Scholar
  11. 11.
    Opricovic, S., Tzeng, G.-H.: Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 156(2), 445–455 (2004)CrossRefzbMATHGoogle Scholar
  12. 12.
    Pedrycz, W., Ekel, P., Parreiras, R.: Fuzzy Multicriteria Decision-Making: Models, Methods and Applications. Wiley, New Jersey (2010)CrossRefGoogle Scholar
  13. 13.
    The R project for statistical computing (2017). http://www.r-project.org

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Blanca Ceballos
    • 1
  • María T. Lamata
    • 1
  • David A. Pelta
    • 1
    Email author
  • Ronald R. Yager
    • 2
  1. 1.University of GranadaGranadaSpain
  2. 2.Machine Intelligence InstituteIona CollegeNew RochelleUSA

Personalised recommendations