Sugeno Integral on Property-Based Preference Domains

  • Marta CardinEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 641)


We consider decision problems in which we have to compare and rank a set of alternatives and each alternative is defined by its attributes or properties. We introduce and characterize property-based preference domains. This paper proposes also a characterization and a generalization of Sugeno integral in our framework.


Poset Topological space Congruence Aggregation functional Sugeno integral 


  1. 1.
    Cardin, M.: Benchmarking over distributive lattices. Commun. Comput. Inf. Sci. 610, 117–125 (2016)Google Scholar
  2. 2.
    Caspard, N., Leclerc, B., Monjardet, B.: Finite Ordered Sets. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2012)zbMATHGoogle Scholar
  3. 3.
    Couceiro, M., Marichal, J.-L.: Polynomial functions over bounded distributive lattices. J. Mult. Valued Log. Soft Comput. 18, 247–256 (2012)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Couceiro M., Marichal J.L.: Characterizations of discrete Sugeno integrals as lattice polynomial functions. In: Proceedings of the 30th Linz Seminar on Fuzzy Set Theory, LINZ 2009, pp. 17–20 (2009)Google Scholar
  5. 5.
    Couceiro, M., Marichal, J.L.: Characterizations of discrete Sugeno integrals as polynomial functions over distributive lattices. Fuzzy Set Syst. 161, 694–707 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Daniëls, T., Pacuit, E.: A general approach to aggregation problems. J. Log. Comput. 19(3), 517–536 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, New York (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Giacobazzi, R., Ranzato, F.: Some properties of complete congruences lattices. Algebra Univ. 40, 189–200 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gordon, S.: Unanimity in attribute-based preference domains. Soc. Choice Welf. 44, 13–29 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  11. 11.
    Grätzer, G.: General Lattice Theory. Birkhäuser Verlag, Berlin (2003)zbMATHGoogle Scholar
  12. 12.
    Hala\(\breve{s}\), R.: Congruences on posets. Contrib. Gen. Algebra 12, 195–210 (2000). VerlagGoogle Scholar
  13. 13.
    Hala\(\breve{s}\), R., Mesiar, R., Pócs, J.: A new characterization of the discrete Sugeno integral. Inform. Fusion 29, 84–86 (2016)Google Scholar
  14. 14.
    Hala\(\breve{s}\), R., Mesiar, R., Pócs, J.: Congruences and the discrete Sugeno integrals on bounded distributive lattices. Inf. Sci. 367, 443–448 (2016)Google Scholar
  15. 15.
    Leclerc, B., Monjardet, B.: Aggregation and residuation. Order 30, 261–268 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    List, C., Polak, B.: Introduction to judgment aggregation. J. Econ. Theory 145, 441–446 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Monjardet, B.: Arrowian characterization of latticial federation consensus functions. Math. Soc. Sci. 20, 51–71 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Nehring, K., Puppe, C.: Abstract Arrowian aggregation. J. Econ. Theory 145, 467–494 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of EconomicsUniversità Ca’ FoscariVeneziaItaly

Personalised recommendations