Advertisement

A New Extension of Monotonicity: Ordered Directional Monotonicity

  • Humberto BustinceEmail author
  • Radko Mesiar
  • Anna Kolesárová
  • Mikel Sesma-Sara
  • Javier Fernandez
  • Mikel Galar
  • Mikel Elkano
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 641)

Abstract

In this work, we discuss a recent generalization of the classical notion of monotonicity, with a special focus on the idea of directional monotonicity. This idea leads to the concepts of pre-aggregation functions and of ordered directional monotonicity. For the former, the direction along which monotonicity is considered is the same for all the points of the domain and the same boundary conditions as for aggregation functions are imposed. For the latter, different directions of monotonicity may be considered at different points.

Keywords

Aggregation function Pre-aggregation function Directional monotonicity Ordered-directional monotonicity 

Notes

Acknowledgment

The authors would like to thank research projects TIN2016-77356-P(AEI/FEDER, UE) and APVV-14-0013.

References

  1. 1.
    Beliakov, G., Bustince, H., Calvo, T.: A Practical Guide to Averaging Functions. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  2. 2.
    Bustince, H., Barrenechea, E., Lafuente, J., Mesiar, R., Kolesárová, A.: Ordered directionally monotone functions. Justification and application. IEEE Trans. Fuzzy Syst.Google Scholar
  3. 3.
    Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R.: Directional monotonicity of fusion functions. Eur. J. Oper. Res. 244(1), 300–308 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bustince, H., Pagola, M., Mesiar, R., Hüllermeier, E., Herrera, F.: Grouping, overlap, and generalized bientropic functions for fuzzy modeling of pairwise comparisons. IEEE Trans. Fuzzy Syst. 20, 405–415 (2012)CrossRefGoogle Scholar
  5. 5.
    Bustince, H., Barrenechea, E., Calvo, T., James, S., Beliakov, G.: Consensus in multi-expert decision making problems using penalty functions defined over a Cartesian product of lattices. Inf. Fusion 17, 56–64 (2014)CrossRefGoogle Scholar
  6. 6.
    Bustince, H., Montero, J., Mesiar, R.: Migrativity of aggregation operators. Fuzzy Sets Syst. 160(6), 766–777 (2008)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bustince, H., Fernandez, J., Mesiar, R., Montero, J., Orduna, R.: Overlap functions. Nonlinear Anal. Theory Meth. Appl. 72, 1488–1499 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Calvo, T., Beliakov, G.: Aggregation functions based on penalties. Fuzzy Sets Syst. 161(10), 1420–1436 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Calvo, T., Kolesárová, A., Komorníková, M., Mesiar, R.: Aggregation operators: properties, classes and construction methods. In: Calvo, T., Mayor, G., Mesiar, R. (eds.) Aggregation Operators. New Trends and Applications, pp. 3–104. Physica-Verlag, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Calvo, T., Mesiar, R., Yager, R.R.: Quantitative weights and aggregation. IEEE Trans. Fuzzy Syst. 12, 62–69 (2004)CrossRefGoogle Scholar
  11. 11.
    Canny, J.: Finding edges and lines in images. Technical report, Massachusetts Institute of Technology, Cambridge, MA, USA (1983)Google Scholar
  12. 12.
    Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  14. 14.
    Jurio, A., Bustince, H., Pagola, M., Pradera, A., Yager, R.R.: Some properties of overlap and grouping functions and their application to image thresholding. Fuzzy Sets Syst. 229, 69–90 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lucca, G., Sanz, J., Dimuro, G.P., Bedregal, B., Mesiar, R., Kolesárová, A., Bustince, H.: Pre-aggregation functions: construction and an application. IEEE Trans. Fuzzy Syst. 23(2), 260–272 (2016)CrossRefzbMATHGoogle Scholar
  16. 16.
    Wilkin, T., Beliakov, G.: Weakly monotonic averaging functions. Int. J. Intell. Syst. 30(2), 144–169 (2015)CrossRefGoogle Scholar
  17. 17.
    Yager, R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans. Syst. Man Cybern. 18, 183–190 (1988)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Humberto Bustince
    • 1
    • 2
    Email author
  • Radko Mesiar
    • 3
  • Anna Kolesárová
    • 4
  • Mikel Sesma-Sara
    • 1
    • 2
  • Javier Fernandez
    • 1
    • 2
  • Mikel Galar
    • 1
    • 2
  • Mikel Elkano
    • 1
    • 2
  1. 1.Department of Automation and ComputingPublic University of NavarraPamplonaSpain
  2. 2.Institute of Smart CitiesPublic University of NavarraPamplonaSpain
  3. 3.Slovak University of TechnologyBratislavaSlovakia
  4. 4.Institute of Information Engineering, Automation and MathematicsSlovak University of TechnologyBratislavaSlovakia

Personalised recommendations