Kleene Algebras as Sequences of Orthopairs

  • Stefania BoffaEmail author
  • Brunella Gerla
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 641)


We study sequences of approximations of sets given by refining tolerance relations on the universe, and we show that such sequences can be equipped with a structure of finite centered Kleene algebra satisfying the interpolation property. We further show that every such Kleene algebra is isomorphic to the algebra of sequences of approximations of subsets of a suitable universe.


  1. 1.
    Aguzzoli, S., Boffa, S., Ciucci, D., Gerla, B.: Refinements of orthopairs and IUML-algebras. In: Proceedings of IJCRS 2016, Santiago, Chile. Lecture Notes in Artificial Intelligence, vol. 9920, pp. 87–96 (2016)Google Scholar
  2. 2.
    Aguzzoli, S., Flaminio, T., Marchioni, E.: Finite Forests. Their Algebras and Logics (Submitted)Google Scholar
  3. 3.
    Banerjee, M., Chakraborty, K.: Algebras from rough sets. In: Pal, S., Skowron, A., Polkowski, L. (eds.) Rough-Neural Computing, pp. 157–188. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Belohlavek, R.: What is a fuzzy concept lattice? II. In: International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing, pp. 19–26. Springer, Heidelberg, June 2011Google Scholar
  5. 5.
    Bianchi, M.: A temporal semantics for nilpotent minimum logic. Int. J. Approx. Reason. 55(1, part 4), 391–401 (2014)Google Scholar
  6. 6.
    Boffa, S., Gerla, B.: Sequences of orthopairs given by refinements of coverings. In: International Workshop on Fuzzy Logic and Applications, pp. 95–105. Springer (2016)Google Scholar
  7. 7.
    Brignole, D., Monteiro, A.: Caractérisation des algébres de Nelson par des égalités. In: I, II. Proceedings of Japan Academy, vol. 43, pp. 279–283, 284–285 (1967)Google Scholar
  8. 8.
    Castiglioni, J.L., Celani, S.A., San Martn, H.J.: Kleene algebras with implication. Algebra universalis, 1–19Google Scholar
  9. 9.
    Cignoli, R.: The class of Kleene algebras satisfying an interpolation property and Nelson algebras. Algebra Universalis 23, 262–292 (1986)Google Scholar
  10. 10.
    Ciucci, D.: Orthopairs: a simple and widely used way to model uncertainty. Fundamenta Informaticae 108(3–4), 287–304 (2011)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Ciucci, D., Dubois, D.: Three-valued logics, uncertainty management and rough sets. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets XVII. LNCS, vol. 8375, pp. 1–32. Springer, Heidelberg (2014)Google Scholar
  12. 12.
    Csajbók, Z.E.: Approximation of sets based on partial covering. In: Peters, J.F., Skowron, A., Ramanna, S., Suraj, Z., Wang, X. (eds.) Transactions on Rough Sets XVI. LNCS, vol. 7736, pp. 144–220. Springer, Heidelberg (2013)Google Scholar
  13. 13.
    Järvinen, J.: Knowledge representation and rough sets, Ph.D. dissertation, Department of Mathematics, University of Tuku, Finland, TUCS Dissertations 14 (1999)Google Scholar
  14. 14.
    Järvinen, J., Radeleczki, S.: Rough sets determined by tolerances. Int. J. Approx. Reason. 55, 1419–1438 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kalman, J.: Lattices with involution. Trans. Amer. Math. Soc. 87, 485–491 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pagliani, P.: Rough set theory and logic-algebraic structures. In: Incomplete Information: Rough Set Analysis, pp. 109–190. Physica-Verlag, Heidelberg (1998)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Università dell’ InsubriaVareseItaly

Personalised recommendations