About Fisher-Tippett-Gnedenko Theorem for Intuitionistic Fuzzy Events

  • Renáta Bartková
  • Katarína ČunderlíkováEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 641)


In the paper the space of observables with respect to a family of the intuitionistic fuzzy events is considered. We proved the modification of the Fisher-Tippet-Gnedenko theorem for sequence of independent intuitionistic fuzzy observables. It is the theorem of part of statistic, which is called the extreme value theory.


Intuitionistic fuzzy set Intuitionistic fuzzy state The sequence of intuitionistic fuzzy observables Independence Joint intuitionistic fuzzy observable Convergence in distribution Fisher-Tippet-Gnedenko theorem The extreme value theory 


  1. 1.
    Atanassov, K.T.: Intuitionistic Fuzzy Sets: Theory and Applications. Studies in Fuzziness and Soft Computing. Physica-Verlag, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  2. 2.
    Atanassov, K.T.: On Intuitionistic Fuzzy Sets. Springer, Heidelberg (2012)CrossRefzbMATHGoogle Scholar
  3. 3.
    Coles, S.: An Introduction to Statistical Modeling of Extreme Values. Springer, New York (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Embrechts, P., Kluppelberg, C., Mikosch, T.: Modelling Extremal Events: For Insurance and Finance, pp. 152–180. Springer (1997). ISSN 0172–4568Google Scholar
  5. 5.
    Gumbel, E.J.: Statistics of Extremes. Columbia University Press, New York (1958). ISBN 0-486-43604-7zbMATHGoogle Scholar
  6. 6.
    Haan, L., Ferreira, A.: Extreme Value Theory: An Introduction. Springer, New York (2006)CrossRefzbMATHGoogle Scholar
  7. 7.
    Juhás, M.: Statistical models of extreme values. Ph.D. thesis, Faculty of Natural Sciences, P. J. Šafárika University, Košice, 72 pages (2013)Google Scholar
  8. 8.
    Lendelová, K.: Convergence of IF-observables. In: Issues in the Representation and Processing of Uncertain and Imprecise Information - Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized nets, and Related Topics, pp. 232–240 (2005)Google Scholar
  9. 9.
    Lendelová, K.: Conditional IF-probability. In: Advances in Soft Computing: Soft Methods for Integrated Uncertainty Modelling, pp. 275–283 (2006)Google Scholar
  10. 10.
    Riečan, B.: On a problem of Radko Mesiar: general form of IF-probabilities. Fuzzy Sets Syst. 152, 1485–1490 (2006)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Riečan, B.: On the probability and random variables on IF events. In: Ruan, D., et al. (eds.) Proceedings of 7th FLINS Conference on Applied Artifical Intelligence, Genova, pp. 138–145 (2006)Google Scholar
  12. 12.
    Riečan, B.: Analysis of fuzzy logic models. In: Koleshko, V. (ed.) Intelligent Systems, INTECH, pp. 219–244 (2012)Google Scholar
  13. 13.
    Riečan, B., Neubrunn, T.: Integral, Measure and Ordering. Kluwer, Dordrecht (1997)zbMATHGoogle Scholar
  14. 14.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–358 (1965)CrossRefzbMATHGoogle Scholar
  15. 15.
    Zadeh, L.A.: Probability measures on fuzzy sets. J. Math. Anal. Appl. 23, 421–427 (1968)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Mathematical InstituteSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations