Advertisement

From Semi-fuzzy to Fuzzy Quantifiers via Łukasiewicz Logic and Games

  • Paolo BaldiEmail author
  • Christian G. Fermüller
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 641)

Abstract

Various challenges for lifting semi-fuzzy quantifier models to fully fuzzy ones are discussed. The aim is to embed such models into Łukasiewicz logic in a systematic manner. Corresponding extensions of Giles’ game with random choices of constants as well as precisifications of fuzzy models are introduced for this purpose.

References

  1. 1.
    Cintula, P., Fermüller, C.G., Hájek, P., Noguera, C. (eds.): Handbook of Mathematical Fuzzy Logic, vol. 3. College Publications, London (2011 and 2015)Google Scholar
  2. 2.
    Delgado, M., Ruiz, M., Sánchez, D., Vila, M.: Fuzzy quantification: a state of the art. Fuzzy Sets Syst. 242, 1–30 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Díaz-Hermida, F., Bugarín, A., Cariñena, P., Barro, S.: Voting-model based evaluation of fuzzy quantified sentences: a general framework. Fuzzy Sets Syst. 146(1), 97–120 (2004). doi: 10.1016/j.fss.2004.03.012 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fermüller, C.G.: Combining fuzziness and context sensitivity in game based models of vague quantification. In: Proceedings of Integrated Uncertainty in Knowledge Modelling and Decision Making - 4th International Symposium, IUKM 2015, Nha Trang, Vietnam, 15–17 October 2015, pp. 19–31. Springer (2015)Google Scholar
  5. 5.
    Fermüller, C.G.: Semantic games for fuzzy logics. In: Cintula, P., Fermüller, C.G., Noguera C. (eds.) Handbook of Mathematical Fuzzy Logic, vol. 3, pp. 969–1028. College Publications, London (2015)Google Scholar
  6. 6.
    Fermüller, C.G., Kosik, R.: Combining supervaluation and degree based reasoning under vagueness. In: Logic for Programming, Artificial Intelligence, and Reasoning, pp. 212–226. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Fermüller, C.G., Roschger, C.: Randomized game semantics for semi-fuzzy quantifiers. In: Greco, S. (ed.) Advances in Computational Intelligence, Communications in Computer and Information Science, vol. 300, pp. 632–641. Springer, Heidelberg (2012)Google Scholar
  8. 8.
    Fermüller, C.G., Roschger, C.: Randomized game semantics for semi-fuzzy quantifiers. Logic J. IGPL 22(3), 413–439 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fine, K.: Vagueness, truth and logic. Synthese 30(3), 265–300 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Giles, R.: A non-classical logic for physics. Stud. Logica 33(4), 397–415 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Giles, R.: Semantics for fuzzy reasoning. Int. J. Man Mach. Stud. 17(4), 401–415 (1982)CrossRefzbMATHGoogle Scholar
  12. 12.
    Glöckner, I.: Fuzzy quantifiers: a computational theory. In: Studies in Fuzziness and Soft Computing, vol. 193. Springer, Heidelberg (2006)Google Scholar
  13. 13.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)Google Scholar
  14. 14.
    Zadeh, L.: A computational approach to fuzzy quantifiers in natural languages. Comput. Math. Appl. 9(1), 149–184 (1983)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.TU WienViennaAustria

Personalised recommendations