Advertisement

Mental Schemes of: Linear Algebra Visual Constructs

  • Hamide DoganEmail author
Chapter
Part of the ICME-13 Monographs book series (ICME13Mo)

Abstract

This chapter is discussing the effect of instructional dynamic visual modalities on learners’ mental structures. We documented the effects by comparing the thinking modes, displayed on interview responses, of the learners who were exposed to dynamic visual representations, to those who were exposed to the traditional instructional tools. The data came from twelve first-year linear algebra students’ interview responses to a set of questions on the linear independence concept. Our findings point to notable differences on the nature of the mental schemes that learners displayed in the presence and the absence of the dynamic visual modes.

Keywords

Linear algebra Visualization Thinking modes Instructional modalities 

Notes

Acknowledgements

Work reported in this chapter is made possible partially by a grant from NSF (CCLI-0737485).

References

  1. Carlson, D. (1997). Teaching linear algebra: must the fog always roll in? Resources for Teaching Linear Algebra. MAA Notes, Vol. 42. pp. 39–51.Google Scholar
  2. Dautermann, J. (1992). ISETL: A Language for Learning Mathematics. St. Paul: West Educational Publishing.Google Scholar
  3. Dogan, H. (2004). Visual instruction of abstract concepts for non-major students. International Journal of Engineering Education (IJEE). Vol. 2, pp 671–676.Google Scholar
  4. Dogan, H. (2006). Lack of set theory-relevant prerequisite knowledge. International Journal of Mathematics Education in Science and Technology (IJMEST). 37(4). pp. 401–410. June.Google Scholar
  5. Dogan, H. (2012). Emotion, confidence, perception and expectation: case of mathematics. International Journal of Science and Mathematics Education (IJSME). Vol. 10. pp. 49–69.Google Scholar
  6. Dogan, H. (2013). Cognitive traits of instructional technology: linear algebra. Proceedings of 25th International Conference on Technology in Collegiate Mathematics (ICTCM). Boston, Massachusetts, March 21–24. http://archives.math.utk.edu/ICTCM/i/25/S077.html.
  7. Dogan, H. (2014a). Web-module on Linear Independence. Retrieved from http://demonstrations.wolfram.com/SetsOfLinearCombinationsAndTheirImagesUnderLinearTransformat/. Accessed July 2 2017.
  8. Dogan, H. (2014b). Multiple tasks derived from an interactive module: linear transformations and eigenspace. Proceedings of 26th anniversary International Conference on Technology in Collegiate Mathematics (ICTCM). Paper S123. San Antonio, Texas, March 20–23. http://archives.math.utk.edu.
  9. Dogan-Dunlap, H. (2003). Technology-supported inquiry based learning in collegiate mathematics. The Electronic Proceedings of the 16th annual International Conference on Technology in Collegiate Mathematics (ICTCM), Chicago, November 2003. http://archives.math.utk.edu/.
  10. Dogan-Dunlap, H. (2010). Linear algebra students’ modes of reasoning: geometric representations. Linear Algebra and Its Applications (LAA). Vol. 432. pp. 2141–2159.Google Scholar
  11. Dogan, H., Carrizales, R. & Beaven, P. (2011). Metonymy and object formation: vector space theory. In Ubuz, B. (Ed.) Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, (Research Reports) Vol. 2, pp. 265–272. Ankara, Turkey: PME.Google Scholar
  12. Dorier, J. & Robert, A. (2000). On a research programme concerning the teaching and learning of linear algebra in the first year of a French science university. International Journal of Mathematics Education in Science & Technology (IJMEST), 31(1), 27–35.Google Scholar
  13. Dorier, J. L, Robert, A, Robinet, J., & Rogalsiu, M. (2000). The obstacle of formalism in linear algebra. In JL. Dorier (Ed.) On the Teaching of Linear Algebra (85–124). Mathematics Education Library, Vol. 23. Springer, Dordrecht.Google Scholar
  14. Dorier, J., & Sierpinska, A. (2001). Research into the teaching and learning of linear algebra. In Derek Holton (Ed.) The Teaching and Learning of Mathematics of University level (255–273) Kluwer Academic Publishers, DorDrecht.Google Scholar
  15. Dubinsky, E. (1997). Some thoughts on a first course in linear algebra at the college level. Resources for Teaching Linear Algebra. MAA Notes. Vol. 42. pp. 85–106.Google Scholar
  16. Gardenfors, P., & Johansson, P. (2005). Cognition, Education, and Communication Technology. Lawrence Erlbaum Associates, Inc. New, Jersey.Google Scholar
  17. Glaser, B. (1992). Emergence vs. Forcing: Basics of Grounded Theory Analysis. Sociology Press. Mill Valley, CA.Google Scholar
  18. Gol Tabaghi, S. (2014). How does dragging changes student’s awareness: developing meanings for eigenvector and eigenvalue. Canadian Journal Science, Mathematics and Technology Education. 14(3). pp. 223–237.Google Scholar
  19. Gol Tabaghi, S. & Sinclair, N. (2013). Using dynamic geometry software to explore eigenvectors: the emergence of dynamic synthetic-geometric thinking. Technology, Knowledge and Learning. 18(3). pp. 149–164.Google Scholar
  20. Harel, G. (2000). Three principles of learning and teaching mathematics. In JL. Dorier (Ed.) On the Teaching of Linear Algebra (177–1890). Mathematics Education Library, Vol. 23. Springer, Dordrecht.Google Scholar
  21. Harel, G. (1997). The linear algebra curriculum study group recommendations: moving beyond concept definition. Resources for Teaching Linear Algebra. MAA notes. Vol. 42. pp. 107–126.Google Scholar
  22. Harel, G. (1989). Learning and teaching linear algebra: difficulties and an alternative approach to visualizing concepts and processes. Focus on Learning Problems in mathematics. 11(2). Spring Edition.Google Scholar
  23. Harel, G. (1987). Variations in linear algebra content presentations. For the Learning of Mathematics. 7 (3). pp. 29–34.Google Scholar
  24. Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: an introductory analysis. In J. Hiebert (Ed.) Conceptual and Procedural Knowledge: The Case of Mathematics (1–3) Lawrence Erlbaum Associates, London, Hillsdale, NJ.Google Scholar
  25. Hillel, J., & Sierpinska, A. (1994). On one persistent mistake in linear algebra. 18th PME Proceedings. Vol. 3. Research Papers.Google Scholar
  26. Leon, S., Herman, E., & Faulkenberry, R. (1996). ATLAST Computer Exercises for Linear Algebra. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  27. Leron, U., & Dubinsky, E. (1995). An abstract algebra story. American Mathematical Monthly. 102(3). pp. 227–42.Google Scholar
  28. Mariotti, M. A. (2014). Transforming images in a DGS: the semiotic potential of the dragging tool for introducing the notion of conditional statement. In S. Rezat, M. Hattermann &A. Peter-Koop (Eds.) Transforming –A Fundamental Idea of Mathematics Education (155–172) New York: Springer.Google Scholar
  29. National Research Council (NRC). (2000). How people learn: Brain, Mind, Experience and School. National Academy Press. Washington, D.C.Google Scholar
  30. Roberts, L. (1996). Software activities for linear algebra: concepts and caveats. PRIMUS. Vol. 6. No. 2. June.Google Scholar
  31. Salgado, H. & Trigueros, M. (2015). Teaching eigenvalues and eigenvectors using models and APOS theory. The Journal of Mathematical Behavior. Vol. 39. pp. 100–120.Google Scholar
  32. Schwarz, D., Martin, T. & Nasir, N. (2005). Design for knowledge evolution: towards a perspective theory for integrating first- and second-hand knowledge. In Gardenfors, P., and Johansson, P., (Eds.). Cognition, Education, and Communication Technology (22–55). Lawrence Erlbaum Associates, Inc. New, Jersey.Google Scholar
  33. Sierpinska, A. (2000). On some aspects of students’ thinking in linear algebra. In JL. Dorier JL. (Ed.) On the Teaching of Linear Algebra (pp. 209–246). Mathematics Education Library, vol 23. Dordrecht: Springer.Google Scholar
  34. Sierpinska, A., Trgalova, J., Hillel, J., & Drayfus, T. (1999). Teaching and learning linear algebra with cabri. Research forum paper. The Procedıngs of PME 23, Haifa University, Israel. Vol 1, pp. 119–134.Google Scholar
  35. Stewart, S., & Thomas, M. O. J. (2010). Student learning of basis, span and linear independence in linear algebra. International Journal of Mathematical Education in Science and Technology. 41(2). pp. 173–188.Google Scholar
  36. Stewart, S., & Thomas, M. O. J. (2009). A framework for mathematical thinking: the case of linear algebra. International Journal of Mathematical Education in Science and Technology. 40(7). pp. 951–961.Google Scholar
  37. Stewart, S., & Thomas, M. O. J. (2004). The learning of linear algebra concepts: instrumentation of CAS calculators. Proceedings of the 9th Asian Technology Conference in Mathematics (ATCM), Singapore. Pp. 377–386.Google Scholar
  38. Thomas, M. O. J., & Stewart, S. (2011). Eigenvalues and eigenvectors: embodied, symbolic, and formal thinking. Mathematics Education Research Journal. Vol. 23. pp. 275–296.Google Scholar
  39. Tucker, A. (1993). The growing importance of linear algebra in undergraduate mathematics. College Mathematics Journal. p. 24.Google Scholar
  40. Torres, C. & Dogan-Dunlap, H. (2006) Technology use in ability-grouped high school mathematics classrooms. E-Journal of Instructional Science and Technology (e-JIST). Vol. 9, No. 1.Google Scholar
  41. Wawro, M., Rasmussen, C., Zandieh, M., Sweeney, G. F., & Larson, C. (2012). An inquiry-oriented approach to span and linear independence: the case of the magic carpet ride sequence. PRIMUS: Problems, Resources, and Issues in Mathematics Undergraduate Studies. Vol. 22. No. 8. pp. 577–599.Google Scholar
  42. Wicks, J. R. (1996). Linear Algebra: An Introductory Laboratory Approach with Mathematica. Addison-Wesley Publishing Company, Inc. Reading, Massachusetts.Google Scholar
  43. Zandieh, M., Wawro, M., & Rasmussen, C. (2017). An example of inquiry in linear algebra: the roles of symbolizing and brokering. PRIMUS: Problems, Resources, and Issues in Mathematics Undergraduate Studies. Vol. 27. No. 1. Pp. 96–124.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Mathematical SciencesUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations