Detection of Tumor Markers and Cell Metabolites in Cell Cultures, Using Nanostructured Chemoresistive Sensors

  • N. Landini
  • B. Fabbri
  • A. Gaiardo
  • S. Gherardi
  • V. Guidi
  • G. Rispoli
  • M. Valt
  • G. Zonta
  • C. Malagù
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 457)

Abstract

Nowadays, tumor markers detection is one of the most dynamic field of research for medical technologies, as it seems a reliable source of screening technologies able to both detect neoplasms before their degeneration into malignant forms, and monitor possible relapses after the main cancer removal. On the other hand, studying neoplastic cell cultures behaviour, and their vitality in real time, places problems given to the high proliferation rate of the tumor cells. In this work, nanostructured chemoresistive sensors, sensing unit able to detect volatile chemicals in concentrations up to part per billions, have been used to detect neoplastic markers, with the idea to develop a technology able to follow in real time cell cultures and neoplasms growth, for both research and application in the medical field.

Keywords

Sensors Nanotechnology Immortalized cells Cells Biomarkers Metabolites Cell cultures 

Notes

Acknowledgements

The authors would like to thank CCIAA of Ferrara for the grant “CCIAA/UNIFE” obtained in 2016, which helped in the realization of this work.

References

  1. 1.
    Peng, G., Hakim, M., Broza, Y.Y., Billan, S., Abdah-Bortnyak, R., Kuten, A., Tish, U., Haick, H.: Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Brit. J. Cancer 103, 542–551 (2010)CrossRefGoogle Scholar
  2. 2.
    Altomare, D.F., Di Lena, M., Porcelli, F., Trizio, L., Travaglio, E., Tutino, M., Dragonieri, S., Memeo, V., de Gennaro, G.: Exhaled volatile organic compounds identify patients with colorectal cancer. Brit. J. Surg. 100, 144–150 (2013)CrossRefGoogle Scholar
  3. 3.
    Cairns, R.A., Harris, I.S., Mak, T.W.: Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85–95 (2011)CrossRefGoogle Scholar
  4. 4.
    Qiu, Y., Cai, G., Su, M., Chen, T., Zheng, X., Xu, Y., et al.: Serum metabolite profiling of human colorectal cancer using GC—TOFMS and UPLC—QTOFMS. J. Proteome Res. 8(10), 4844–4850 (2009)CrossRefGoogle Scholar
  5. 5.
    Chan, E.C.Y., Koh, P.K., Mal, M., Cheah, P.Y., Eu, K.W., Backshall, A., et al.: Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J. Proteome Res. 8(1), 352–361 (2009)CrossRefGoogle Scholar
  6. 6.
    Phillips, M., Gleeson, K., Hughes, J.M.B., Greenberg, J., Cataneo, R.N., Baker, L., et al.: Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. Lancet 353(9168), 1930–1933 (1999)CrossRefGoogle Scholar
  7. 7.
    Probert, C.S.J., Ahmed, I., Khalid, T., Johnson, E., Smith, S., Ratcliffe, N.: Volatile organic compounds as diagnostic biomarkers in gastrointestinal and liver diseases. J. Gastrointestin. Liver Dis. 8(3), 337–343 (2009)Google Scholar
  8. 8.
    Zonta, G., Anania, G., Fabbri, B., Gaiardo, A., Gherardi, S., Giberti, A., Guidi, V., Landini, N., Malagù, C.: Detection of colorectal cancer biomarkers in the presence of interfering gases. Sens. Actuators B Chem. 218, 289–295 (2015)CrossRefGoogle Scholar
  9. 9.
    Malagù, C., Fabbri, B., Gherardi, S., Giberti, A., Guidi, V., Landini, N., Zonta, G.: Chemoresistive Gas Sensors for the Detection of Colorectal Cancer Biomarkers. Sensors 14(10), 18982–18992 (2014)CrossRefGoogle Scholar
  10. 10.
    Landini, N., Zonta, G., Malagù, C.: Detection of tumor markers on feces with nanostructured sensors. Scholar’s Press (2015)Google Scholar
  11. 11.
    Zonta, G., Anania, G., Fabbri, B., Gaiardo, A., Gherardi, S., Giberti, A., Landini, N., Malagù, C., Scagliarini, L., Guidi, V.: Preventive screening of colorectal cancer with a device based on chemoresistive sensors. Sens. Actuators B Chem. 238, 1098–1101 (2017)CrossRefGoogle Scholar
  12. 12.
    Carotta, M.C., Martinelli, G., Sadaoka, Y., Nunziante, P., Traversa, E.: Gas-sensitive electrical properties of perovskite-type SmFeO3 thick films. Sens. Actuators B Chem. 48(1–3), 270–276 (1998)CrossRefGoogle Scholar
  13. 13.
    Carotta, M.C., Ferroni, M., Gnani, D., Guidi, V., Merli, M., Martinelli, G., et al.: Nanostructured pure and Nb-doped TiO2as thick film gas sensors for environmental monitoring. Sens. Actuators B Chem. 58(1–3), 310–317 (1999)CrossRefGoogle Scholar
  14. 14.
    Carotta, M.C., Benetti, M., Guidi, V., Gherardi, S., Malagù, C., Vendemiati, B., et al.: Nanostructured (Sn, Ti, Nb)O2 solid solutions for hydrogen sensing. Proc. Mater. Res. Societ. 915, 68210 (2000)Google Scholar
  15. 15.
    Carotta, M.C., Gherardi, S., Guidi, V., Malagù, C., Martinelli, G., Vendemiati, B., et al.: (Ti, Sn)O2 binary solid solutions for gas sensing: Spectroscopic, optical and transport properties. Sens. Actuators B Chem. 130(1), 38–45 (2008)CrossRefGoogle Scholar
  16. 16.
    Carotta, M.C., Cervi, A., Giberti, A., Guidi, V., Malagù, C., Martinelli, G., et al.: Metal–oxide solid solutions for light alkane sensing. Sens. Actuators B Chem. 133(2), 516–520 (2008)CrossRefGoogle Scholar
  17. 17.
    Carotta, M.C., Cervi, A., di Natale, V., Gherardi, S., Giberti, A., Guidi, V., et al.: ZnO gas sensors: a comparison between nanoparticles and nanotetrapods-based thick films. Sens. Actuators B Chem. 137(1), 164–169 (2009)CrossRefGoogle Scholar
  18. 18.
    Carotta, M.C., Guidi, V., Malagù, C., Vendemiati, B., Zanni, A., Martinelli, G., et al.: Vanadium and tantalum-doped titanium oxide (TiTaV): a novel material for gas sensing. Sens. Actuators B Chem. 108(1–2), 89–96 (2005)CrossRefGoogle Scholar
  19. 19.
    Guidi, V., Malagù, C., Carotta, M.C., Vendemiati, B.: Printed films: Materials science and applications in sensors, electronics and photonics. Woodhead Publ. Ser. Electron. Opt. Mater. 278–334 (2012)Google Scholar
  20. 20.
    Gaiardo, A., Fabbri, B., Guidi, V., Bellutti, P., Giberti, A., Gherardi, S., et al.: Metal sulfides as sensing materials for chemoresistive gas sensors. Sensors 16(3), 296 (2016)CrossRefGoogle Scholar
  21. 21.
    Landini, N., Zonta, G., Malagù, C.: Detection of tumor markers on feces with nanostructured sensors. Scholar’s Press (2015)Google Scholar
  22. 22.
    SCENT B1, patent number: 102015000057717, property of SCENT S.r.lGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • N. Landini
    • 1
    • 4
  • B. Fabbri
    • 1
    • 2
  • A. Gaiardo
    • 1
    • 2
    • 3
  • S. Gherardi
    • 4
  • V. Guidi
    • 1
    • 2
  • G. Rispoli
    • 5
  • M. Valt
    • 1
  • G. Zonta
    • 1
    • 2
  • C. Malagù
    • 1
    • 2
  1. 1.Department of Physics and Earth SciencesUniversity of FerraraFerraraItaly
  2. 2.CNR-INO—Istituto Nazionale di OtticaFlorenceItaly
  3. 3.Bruno Kessler FoundationTrentoItaly
  4. 4.SCENT S.r.lFerraraItaly
  5. 5.Department of Life Science and BiotechnologyUniversity of FerraraFerraraItaly

Personalised recommendations