(002)-Oriented AlN Thin Films Sputtered on Ti Bottom Electrode for Flexible Electronics: Structural and Morphological Characterization

  • A. Taurino
  • M. A. Signore
  • M. Catalano
  • M. Masieri
  • F. Quaranta
  • P. Siciliano
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 457)

Abstract

Aluminum nitride (AlN) thin films were deposited by sputtering on Ti bottom electrodes and integrated on a kapton substrate for flexible and stretchable electronics. The aim of this work was to find the best combination of Ti underlayer sputtering conditions and AlN over-growth to obtain the (002) nitride orientation, fundamental requirement for the piezoelectric response of the material in piezoelectric devices. Flexible electronics represent today’s cutting-edge electronic technologies thanks to their low cost and easy fabrication scalability.

Keywords

Aluminum nitride Magnetron sputtering Piezoelectricity Flexible electronics 

Notes

Acknowledgements

The authors are very grateful to M.C. Martucci, E. Melissano, A. Pinna and M. Masieri for their valid technician support in depositions and XRD and SEM characterizations.

References

  1. 1.
    Hwang, G.T., Byun, M., Jeong, C.K., Lee, K.J.: Adv. Healthc. Mater. 4, 646 (2015)CrossRefGoogle Scholar
  2. 2.
    Zalazar, M., Gurman, P., Park, J., Kim, D., Hong, S., Stan, L., Divan, R., Czaplewski, D., Auciello, O.: Appl. Phys. Letters 102, 104101 (2013)CrossRefGoogle Scholar
  3. 3.
    Hasan, D., Pitchappa, P., Wang, J., Wang, T., Yang, B., Ho, C.P., Lee, C.: ACS Photonics 4, 302 (2017)CrossRefGoogle Scholar
  4. 4.
    Jin, H., Zhou, J., Dong, S.R., Feng, B., Luo, J.K., Wang, D.M., Milne, W.I., Yang, C.Y.: Thin Solid Films 520, 4863–4870 (2012)CrossRefGoogle Scholar
  5. 5.
    Akiyama, M., Morofuji, Y., Kamohara, T., Nishikubo, K., Ooishi, Y., Tsubai, M., Fukuda, O., Ueno, N.: Adv. Funct. Mater. 17, 458–462 (2007)CrossRefGoogle Scholar
  6. 6.
    Petroni, S., Maruccio, G., Guido, F., Amato, M., Campa, A., Passaseo, A., Todaro, M.T., De Vittorio, M.: Microelectron. Eng. 98, 603–606 (2012)CrossRefGoogle Scholar
  7. 7.
    Pandey, A., Dutta, S., Prakash, R., Dalal, S., Raman, R., Kapoor, A.K., Kaur, D.: Mater. Sci. Semicond. Process. 52, 16 (2016)CrossRefGoogle Scholar
  8. 8.
    Mayrhofer, P.M., Ried, H., Euchner, H., Pollach, M.S., Mayrhofer, P.H., Bittner, A., Schmid, U.: Acta Mater. 100, 81 (2015)CrossRefGoogle Scholar
  9. 9.
    Signore, M.A., Taurino, A., Catalano, M., Kim, M., Che, Z., Quaranta, F., Siciliano, P.: Mater. Design 119, 151–158 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • A. Taurino
    • 1
  • M. A. Signore
    • 1
  • M. Catalano
    • 1
  • M. Masieri
    • 2
  • F. Quaranta
    • 1
  • P. Siciliano
    • 1
  1. 1.CNR, Institute for Microelectronics and MicrosystemsLecceItaly
  2. 2.CNR, Institute of Archeological Heritage-Monuments and SitesLecceItaly

Personalised recommendations