Advertisement

UV-Cured Composite Films Containing ZnO Nanostructures: Effect of Filler Shape on Piezoelectric Response

  • L. Francioso
  • G. Malucelli
  • A. Fioravanti
  • C. De Pascali
  • M. A. Signore
  • M. C. Carotta
  • A. Bonanno
  • D. Duraccio
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 457)

Abstract

In this work, a facile aqueous sol-gel approach was exploited for synthesizing different ZnO nanostructures; these latter were employed at 4 wt% loading in a UV-curable acrylic system. The piezoelectric behavior of the resulting UV-cured nanocomposite films (NCFs) at resonance and at low frequency (150 Hz, typical value of interest in energy harvesting applications) was thoroughly investigated and correlated to the structure and morphology of the utilized ZnO nanostructures. For this purpose, the NCFs were used as active material into cantilever-shaped energy harvesters obtained through standard microfabrication technology. Interesting piezoelectric behavior was found for all the prepared UV-cured nanostructured films; the piezoelectric response of the different nanofillers was compared in terms of RMS voltage measured as a function of the applied waveform and normalized to the maximum acceleration applied to the cantilever devices. The obtained results confirmed the promising energy harvesting capability of such ZnO nanostructured films. In particular, flower-like structures showed the best piezoelectric performance both at resonance and 150 Hz, gaining a maximum normalized RMS of 0.914 mV and a maximum peak-peak voltage of about 16.0 mVp-p corresponding to the application of 5.79 g acceleration.

Keywords

UV-curable ZnO acrylic system Nanostructured piezoelectric films Energy harvesting UV-curable film thermal stability 

Notes

Acknowledgements

We sincerely acknowledge Prof. Michele Sacerdoti (University of Ferrara, Italy) for the support in the XRD analysis and Dr. Mauro Mazzocchi (CNR-ISTEC, Faenza, Italy) for performing SEM analyses on ZnO nanostructures.

References

  1. 1.
    Di Salvo, F.J.: Thermoelectric cooling and power generation. Science 285, 703 (1999)CrossRefGoogle Scholar
  2. 2.
    Chapin, D., Fuller, C., Pearson, G.: A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25, 676–677 (1954)CrossRefGoogle Scholar
  3. 3.
    Wang, Z.L., Song, J.H.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)CrossRefGoogle Scholar
  4. 4.
    Wang, X.D., Song, J.H., Liu, J., Wang, Z.L.: Growth of self-assembled ZnO nanowire arrays. Science 316, 102–105 (2007)CrossRefGoogle Scholar
  5. 5.
    Bowen, C.R., Kim, H.A., Weaver, P.M., Dunn, S.: Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energ. Environ. Sci. 7, 25–44 (2014)CrossRefGoogle Scholar
  6. 6.
    Briscoe, J., Dunn, S.: Piezoelectric nanogenerators—a review of nanostructured piezoelectric energy harvesters. Nano. Energ. 14, 15–29 (2015)CrossRefGoogle Scholar
  7. 7.
    Wang, X.: Piezoelectric nanogenerators-harvesting ambient mechanical energy at the nanometer scale. Nano. Energ. 1, 13–24 (2012)CrossRefGoogle Scholar
  8. 8.
    Wang, Z.L., Wu, W.: Nanotechnology-enabled energy harvesting for self powered micro-/nanosystems. Angew. Chem. Int. Ed. 51, 11700–11721 (2012)CrossRefGoogle Scholar
  9. 9.
    Chang, C., Tran, V.H., Wang, J., Fuh, Y.-K., Lin, L.: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010)CrossRefGoogle Scholar
  10. 10.
    Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17, R175–R195 (2006)CrossRefGoogle Scholar
  11. 11.
    Wang, Z.Y., Hu, J., Suryavanshi, A.P., Yum, K., Yu, M.F.: Voltage generation from individual BaTiO3 nanowires under periodic tensile mechanical load. Nano Lett. 7, 2966–2969 (2007)CrossRefGoogle Scholar
  12. 12.
    Wang, Z.L., Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)CrossRefGoogle Scholar
  13. 13.
    Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., Wang, Z.L.: Self powered nanowire devices. Nat. Nanotechnol. 5, 366–373 (2010)CrossRefGoogle Scholar
  14. 14.
    Yang, R., Qin, Y., Dai, L., Wang, Z.L.: Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4, 34–39 (2009)CrossRefGoogle Scholar
  15. 15.
    Chen, X., Xu, S., Yao, N., Shi, Y.: 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 2133–2137 (2010)CrossRefGoogle Scholar
  16. 16.
    Chen, X., Xu, S., Yao, N., Xu, W., Shi, Y.: Potential measurement from a single lead ziroconate titanate nanofiber using a nanomanipulator. Appl. Phys. Lett. 94, 253113 (2009)CrossRefGoogle Scholar
  17. 17.
    Zhang, G., Xu, S., Shi, Y.: Electromechanical coupling of lead zirconate titanate nanofibres. Micro Nano Lett. 6, 59–61 (2011)CrossRefGoogle Scholar
  18. 18.
    Huang, C.T., Song, J., Lee, W.-F., Ding, Y., Gao, Z., Hao, Y., Chen, L.-J., Wang, Z.L.: GaN nanowire arrays for high-output nanogenerators. J. Am. Chem. Soc. 132, 4766–4771 (2010)CrossRefGoogle Scholar
  19. 19.
    Ni, X., Wang, F., Lin, A., Xu, Q., Yang, Z., Qin, Y.: Flexible nanogenerator based on single BaTiO3 nanowire. Sci. Adv. Mater. 5, 1781–1787 (2013)CrossRefGoogle Scholar
  20. 20.
    Koka, A., Zhou, Z., Sodano, H.A.: Vertically aligned BaTiO3 nanowire arrays for energy harvesting. Energy Environ. Sci. 7, 288–296 (2014)CrossRefGoogle Scholar
  21. 21.
    Koka, A., Sodano, H.A.: A low-frequency energy harvester from ultralong, vertically aligned BaTiO3 nanowire arrays. Adv. Energy Mater. 4, 1301660 (2014)CrossRefGoogle Scholar
  22. 22.
    Crossley, S., Whiter, R.A., Kar-Narayan, S.: Polymer-based nanopiezoelectric generators for energy harvesting applications. Mater. Sci. Technol. 30, 1613–1624 (2014)CrossRefGoogle Scholar
  23. 23.
    Chang, C.E., Tran, V.H., Wang, J.B., Fuh, Y.K., Lin, L.W.: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010)CrossRefGoogle Scholar
  24. 24.
    Chang, C.E., Fuh, Y.-K., Lin, L.: A direct-write piezoelectric PVDF nanogenerator, transducers 2009. In: Solid-state Sensors, Actuators and Microsystems Conference, pp. 1485–1488. Denver (2009)Google Scholar
  25. 25.
    Cha, S.N., Kim, S.M., Kim, H., Ku, J., Sohn, J.I., Park, Y.J., Song, B.G., Jung, M.H., Lee, E.K., Choi, B.L., Park, J.J., Wang, Z.L., Kim, J.M., Kim, K.: Porous PVDF as effective sonic wave driven nanogenerators. Nano Lett. 11, 5142–5147 (2011)CrossRefGoogle Scholar
  26. 26.
    Soin, N., Shah, T.H., Anand, S.C., Geng, J., Pornwannachai, W., Mandal, P., Reid, D., Sharma, S., Hadimani, R.L., Bayramol, D.V., Siores, E.: Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications. Energy Environ. Sci. 7, 1670–1679 (2014)CrossRefGoogle Scholar
  27. 27.
    Briscoe, J., Jalali, N., Woolliams, P., Stewart, M., Weaver, P.M., Cain, M., Dunn, S.: Measurement techniques for piezoelectric nanogenerators. Energy Environ. Sci. 6, 3035–3045 (2013)CrossRefGoogle Scholar
  28. 28.
    Granstrom, J., Feenstra, J., Sodano, H.A., Farinholt, K.: A review of power harvesting from vibration using piezoelectric materials. Smart Mater. Struct. 16, 1810–1820 (2007)CrossRefGoogle Scholar
  29. 29.
    Park, K.I., Lee, M., Liu, Y., Moon, S., Hwang, G.T., Zhu, G., Kim, J.E., Kim, S.O., Kim, D.K., Wang, Z.L., Lee, K.J.: Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv. Mater. 24, 2999–3004 (2012)CrossRefGoogle Scholar
  30. 30.
    Jung, J.H., Lee, M., Hong, J.I., Ding, Y., Chen, C.Y., Chou, L.J., Wang, Z.L.: Leadfree NaNbO3 nanowires for a high output piezoelectric nanogenerator. ACS Nano 5, 10041–10046 (2011)CrossRefGoogle Scholar
  31. 31.
    Jung, J.H., Chen, C.Y., Yun, B.K., Lee, N., Zhou, Y., Jo, W., Chou, L.J., Wang, Z.L.: Lead-free KNbO3 ferroelectric nanorod based flexible nanogenerators and capacitors. Nanotechnology 23, 375401 (2012)Google Scholar
  32. 32.
    Park, K.I., Jeong, C.K., Ryu, J., Hwang, G.T., Lee, K.J.: Flexible and large-area nanocomposite generators based on lead zirconate titanate particles and carbon nanotubes. Adv. Energ. Mater. 3, 1539–1544 (2013)CrossRefGoogle Scholar
  33. 33.
    Jeong, C.K., Park, K.I., Ryu, J., Hwang, G.T., Lee, K.J.: Large-area and flexible lead-free nanocomposite generator using alkaline niobate particles and metal nanorod filler. Adv. Funct. Mater. 24, 2620–2629 (2014)CrossRefGoogle Scholar
  34. 34.
    Park, K.I., Jeong, C.K., Kim, N.K., Lee, K.J.: Stretchable piezoelectric nanocomposite generator. Nano Convergence 3, 12 (2016)Google Scholar
  35. 35.
    Wang, Z.L.: Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter 16, R829 (2004)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • L. Francioso
    • 1
  • G. Malucelli
    • 2
  • A. Fioravanti
    • 3
    • 4
  • C. De Pascali
    • 1
  • M. A. Signore
    • 1
  • M. C. Carotta
    • 2
  • A. Bonanno
    • 3
  • D. Duraccio
    • 2
    • 5
  1. 1.Institute for Microelectronics and Microsystems—CNR–IMMLecceItaly
  2. 2.Department of Applied Science and Technology and Local INSTM UnitPolitecnico di TorinoAlessandriaItaly
  3. 3.CNR-IMAMOTER FerraraFerraraItaly
  4. 4.Department of ChemistryUniversity of ParmaParmaItaly
  5. 5.CNR-IMAMOTER TorinoTurinItaly

Personalised recommendations