Skip to main content

UV-Cured Composite Films Containing ZnO Nanostructures: Effect of Filler Shape on Piezoelectric Response

  • Conference paper
  • First Online:
Book cover Sensors and Microsystems (AISEM 2017)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 457))

Included in the following conference series:

Abstract

In this work, a facile aqueous sol-gel approach was exploited for synthesizing different ZnO nanostructures; these latter were employed at 4 wt% loading in a UV-curable acrylic system. The piezoelectric behavior of the resulting UV-cured nanocomposite films (NCFs) at resonance and at low frequency (150 Hz, typical value of interest in energy harvesting applications) was thoroughly investigated and correlated to the structure and morphology of the utilized ZnO nanostructures. For this purpose, the NCFs were used as active material into cantilever-shaped energy harvesters obtained through standard microfabrication technology. Interesting piezoelectric behavior was found for all the prepared UV-cured nanostructured films; the piezoelectric response of the different nanofillers was compared in terms of RMS voltage measured as a function of the applied waveform and normalized to the maximum acceleration applied to the cantilever devices. The obtained results confirmed the promising energy harvesting capability of such ZnO nanostructured films. In particular, flower-like structures showed the best piezoelectric performance both at resonance and 150 Hz, gaining a maximum normalized RMS of 0.914 mV and a maximum peak-peak voltage of about 16.0 mVp-p corresponding to the application of 5.79 g acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Di Salvo, F.J.: Thermoelectric cooling and power generation. Science 285, 703 (1999)

    Article  Google Scholar 

  2. Chapin, D., Fuller, C., Pearson, G.: A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25, 676–677 (1954)

    Article  Google Scholar 

  3. Wang, Z.L., Song, J.H.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)

    Article  Google Scholar 

  4. Wang, X.D., Song, J.H., Liu, J., Wang, Z.L.: Growth of self-assembled ZnO nanowire arrays. Science 316, 102–105 (2007)

    Article  Google Scholar 

  5. Bowen, C.R., Kim, H.A., Weaver, P.M., Dunn, S.: Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energ. Environ. Sci. 7, 25–44 (2014)

    Article  Google Scholar 

  6. Briscoe, J., Dunn, S.: Piezoelectric nanogenerators—a review of nanostructured piezoelectric energy harvesters. Nano. Energ. 14, 15–29 (2015)

    Article  Google Scholar 

  7. Wang, X.: Piezoelectric nanogenerators-harvesting ambient mechanical energy at the nanometer scale. Nano. Energ. 1, 13–24 (2012)

    Article  Google Scholar 

  8. Wang, Z.L., Wu, W.: Nanotechnology-enabled energy harvesting for self powered micro-/nanosystems. Angew. Chem. Int. Ed. 51, 11700–11721 (2012)

    Article  Google Scholar 

  9. Chang, C., Tran, V.H., Wang, J., Fuh, Y.-K., Lin, L.: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010)

    Article  Google Scholar 

  10. Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17, R175–R195 (2006)

    Article  Google Scholar 

  11. Wang, Z.Y., Hu, J., Suryavanshi, A.P., Yum, K., Yu, M.F.: Voltage generation from individual BaTiO3 nanowires under periodic tensile mechanical load. Nano Lett. 7, 2966–2969 (2007)

    Article  Google Scholar 

  12. Wang, Z.L., Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)

    Article  Google Scholar 

  13. Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., Wang, Z.L.: Self powered nanowire devices. Nat. Nanotechnol. 5, 366–373 (2010)

    Article  Google Scholar 

  14. Yang, R., Qin, Y., Dai, L., Wang, Z.L.: Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4, 34–39 (2009)

    Article  Google Scholar 

  15. Chen, X., Xu, S., Yao, N., Shi, Y.: 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 2133–2137 (2010)

    Article  Google Scholar 

  16. Chen, X., Xu, S., Yao, N., Xu, W., Shi, Y.: Potential measurement from a single lead ziroconate titanate nanofiber using a nanomanipulator. Appl. Phys. Lett. 94, 253113 (2009)

    Article  Google Scholar 

  17. Zhang, G., Xu, S., Shi, Y.: Electromechanical coupling of lead zirconate titanate nanofibres. Micro Nano Lett. 6, 59–61 (2011)

    Article  Google Scholar 

  18. Huang, C.T., Song, J., Lee, W.-F., Ding, Y., Gao, Z., Hao, Y., Chen, L.-J., Wang, Z.L.: GaN nanowire arrays for high-output nanogenerators. J. Am. Chem. Soc. 132, 4766–4771 (2010)

    Article  Google Scholar 

  19. Ni, X., Wang, F., Lin, A., Xu, Q., Yang, Z., Qin, Y.: Flexible nanogenerator based on single BaTiO3 nanowire. Sci. Adv. Mater. 5, 1781–1787 (2013)

    Article  Google Scholar 

  20. Koka, A., Zhou, Z., Sodano, H.A.: Vertically aligned BaTiO3 nanowire arrays for energy harvesting. Energy Environ. Sci. 7, 288–296 (2014)

    Article  Google Scholar 

  21. Koka, A., Sodano, H.A.: A low-frequency energy harvester from ultralong, vertically aligned BaTiO3 nanowire arrays. Adv. Energy Mater. 4, 1301660 (2014)

    Article  Google Scholar 

  22. Crossley, S., Whiter, R.A., Kar-Narayan, S.: Polymer-based nanopiezoelectric generators for energy harvesting applications. Mater. Sci. Technol. 30, 1613–1624 (2014)

    Article  Google Scholar 

  23. Chang, C.E., Tran, V.H., Wang, J.B., Fuh, Y.K., Lin, L.W.: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010)

    Article  Google Scholar 

  24. Chang, C.E., Fuh, Y.-K., Lin, L.: A direct-write piezoelectric PVDF nanogenerator, transducers 2009. In: Solid-state Sensors, Actuators and Microsystems Conference, pp. 1485–1488. Denver (2009)

    Google Scholar 

  25. Cha, S.N., Kim, S.M., Kim, H., Ku, J., Sohn, J.I., Park, Y.J., Song, B.G., Jung, M.H., Lee, E.K., Choi, B.L., Park, J.J., Wang, Z.L., Kim, J.M., Kim, K.: Porous PVDF as effective sonic wave driven nanogenerators. Nano Lett. 11, 5142–5147 (2011)

    Article  Google Scholar 

  26. Soin, N., Shah, T.H., Anand, S.C., Geng, J., Pornwannachai, W., Mandal, P., Reid, D., Sharma, S., Hadimani, R.L., Bayramol, D.V., Siores, E.: Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications. Energy Environ. Sci. 7, 1670–1679 (2014)

    Article  Google Scholar 

  27. Briscoe, J., Jalali, N., Woolliams, P., Stewart, M., Weaver, P.M., Cain, M., Dunn, S.: Measurement techniques for piezoelectric nanogenerators. Energy Environ. Sci. 6, 3035–3045 (2013)

    Article  Google Scholar 

  28. Granstrom, J., Feenstra, J., Sodano, H.A., Farinholt, K.: A review of power harvesting from vibration using piezoelectric materials. Smart Mater. Struct. 16, 1810–1820 (2007)

    Article  Google Scholar 

  29. Park, K.I., Lee, M., Liu, Y., Moon, S., Hwang, G.T., Zhu, G., Kim, J.E., Kim, S.O., Kim, D.K., Wang, Z.L., Lee, K.J.: Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv. Mater. 24, 2999–3004 (2012)

    Article  Google Scholar 

  30. Jung, J.H., Lee, M., Hong, J.I., Ding, Y., Chen, C.Y., Chou, L.J., Wang, Z.L.: Leadfree NaNbO3 nanowires for a high output piezoelectric nanogenerator. ACS Nano 5, 10041–10046 (2011)

    Article  Google Scholar 

  31. Jung, J.H., Chen, C.Y., Yun, B.K., Lee, N., Zhou, Y., Jo, W., Chou, L.J., Wang, Z.L.: Lead-free KNbO3 ferroelectric nanorod based flexible nanogenerators and capacitors. Nanotechnology 23, 375401 (2012)

    Google Scholar 

  32. Park, K.I., Jeong, C.K., Ryu, J., Hwang, G.T., Lee, K.J.: Flexible and large-area nanocomposite generators based on lead zirconate titanate particles and carbon nanotubes. Adv. Energ. Mater. 3, 1539–1544 (2013)

    Article  Google Scholar 

  33. Jeong, C.K., Park, K.I., Ryu, J., Hwang, G.T., Lee, K.J.: Large-area and flexible lead-free nanocomposite generator using alkaline niobate particles and metal nanorod filler. Adv. Funct. Mater. 24, 2620–2629 (2014)

    Article  Google Scholar 

  34. Park, K.I., Jeong, C.K., Kim, N.K., Lee, K.J.: Stretchable piezoelectric nanocomposite generator. Nano Convergence 3, 12 (2016)

    Google Scholar 

  35. Wang, Z.L.: Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter 16, R829 (2004)

    Google Scholar 

Download references

Acknowledgements

We sincerely acknowledge Prof. Michele Sacerdoti (University of Ferrara, Italy) for the support in the XRD analysis and Dr. Mauro Mazzocchi (CNR-ISTEC, Faenza, Italy) for performing SEM analyses on ZnO nanostructures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Francioso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Francioso, L. et al. (2018). UV-Cured Composite Films Containing ZnO Nanostructures: Effect of Filler Shape on Piezoelectric Response. In: Leone, A., Forleo, A., Francioso, L., Capone, S., Siciliano, P., Di Natale, C. (eds) Sensors and Microsystems. AISEM 2017. Lecture Notes in Electrical Engineering, vol 457. Springer, Cham. https://doi.org/10.1007/978-3-319-66802-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66802-4_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66801-7

  • Online ISBN: 978-3-319-66802-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics