Advertisement

Au-Catalyst Assisted MOVPE Growth of CdTe Nanowires for Photovoltaic Applications

  • Virginia Di Carlo
  • Fabio Marzo
  • Massimo Di Giulio
  • Paola Prete
  • Nico Lovergine
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 457)

Abstract

Vertically-aligned CdTe nanowire (NWs) were grown for the first time by metalorganic vapor phase epitaxy, using diisopropyl-telluride and dimethylcadmium as precursors, and Au nanoparticles as metal catalysts. The NWs were grown between 485 and 515 °C on (111)B-GaAs substrates, the latter overgrown with a 2-μm thick CdTe epilayer. To favor the Au-catalyst assisted process against planar deposition of CdTe, an alternate precursors flow process was adopted during NW self-assembly. Field emission electron microscopy observations and X-ray energy dispersive analyses of CdTe NWs revealed the presence of Au-rich droplets at their tips, the contact-angle between Au-droplets and NWs being ~130°. The NW height increases exponentially with the growth temperature, indicating that the Au-catalyzed process is kinetics-limited (activation energy: ~57 kcal/mol), but no tapering is observed. Low temperature cathodoluminescence spectra recorded from single NWs evidenced a band-edge emission typical of zincblend CdTe, and a dominant (defects-related) emission band at 1.539 eV.

Keywords

CdTe nanowires Au-catalyzed growth Metalorganic vapor phase epitaxy Cathodoluminescence 

Notes

Acknowledgments

The authors would like to acknowledge the financial support of the Ministry for Education, University and Research (MIUR) of Italy through the PON-R&C project INNOVASOL (project no. PON02-00323-3858246).

References

  1. 1.
    LaPierre, R.R., Robson, M., Azizur-Rahman, K.M., Kuyanov, P.: A review of III–V nanowire infrared photodetectors and sensors. J. Phys. D Appl. Phys. 50, 123001 (2017)CrossRefGoogle Scholar
  2. 2.
    Kempa, T.J., Day, R.W., Kim, S., Park, H., Lieber, C.M.: Semiconductor nanowires: a platform for exploring limits and concepts for nano-enabled solar cells. Energy Environ. Sci. 6, 719–733 (2013)CrossRefGoogle Scholar
  3. 3.
    Kapadia, R., Fan, Z., Javey, A.: Design constraints and guidelines for CdS/CdTe nanopillar based photovoltaics. Appl. Phys. Lett. 96, 103116 (2010)CrossRefGoogle Scholar
  4. 4.
    Otnes, G., Borgström, M.T.: Towards high efficiency nanowire solar cells. Nano Today 12, 31–45 (2017)CrossRefGoogle Scholar
  5. 5.
    Schockley, W., Qeisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)CrossRefGoogle Scholar
  6. 6.
    Mathew, X., Thompson, G.W., Singh, V.P., McClure, J.C., Velumani, S., Mathews, N.R., Sebastian, P.J.: Development of CdTe thin films on flexible substrates—a review. Sol. Energy Mater. Sol. Cells 76, 293–303 (2003)CrossRefGoogle Scholar
  7. 7.
    Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology, Springer, New York, New Series, Group III, 17a and 22a (1982)Google Scholar
  8. 8.
    Mitchell, K., Fahrenbruch, A.L., Bube, R.H.: Evaluation of the CdS/CdTe heterojunction solar cell. J. Appl. Phys. 48, 829–830 (1977)CrossRefGoogle Scholar
  9. 9.
    Williams, B.L., Taylor, A.A., Mendis, B.G., Phillips, L., Bowen, L., Major, J.D., Durose, K.: Core-shell ITO/ZnO/CdS/CdTe nanowire solar cells. Appl. Phys. Lett. 104, 053907 (2014)CrossRefGoogle Scholar
  10. 10.
    Kodambaka, S., Tersoff, J., Reuter, M.C., Ross, F.M.: Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires. Phys. Rev. Lett. 96, 096105 (2006)CrossRefGoogle Scholar
  11. 11.
    Zakharov, N.D., Werner, P., Gerth, G., Schubert, L., Sokolov, L., Gösele, U.: Growth phenomena of Si and Si/Ge nanowires on Si (1 1 1) by molecular beam epitaxy. J. Cryst. Growth 290, 6–10 (2006)CrossRefGoogle Scholar
  12. 12.
    Ohlsson, B.J., Björk, M.T., Magnusson, M.H., Deppert, K., Samuelson, L., Wallenberg, L.R.: Size-, shape-, and position-controlled GaAs nano-whiskers. Appl. Phys. Lett. 79, 3335–3337 (2001)CrossRefGoogle Scholar
  13. 13.
    Duan, X., Huang, Y., Cui, Y., Wang, J., Lieber, C.M.: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001)CrossRefGoogle Scholar
  14. 14.
    Huo, H.B., Dai, L., Liu, C., You, L.P., Yang, W.Q., Ma, R.M., Ran, G.Z., Qin, G.G.: Electrical properties of Cu-doped p-ZnTe Nanowires. Nanotechnology 17, 5912–5915 (2006)CrossRefGoogle Scholar
  15. 15.
    Chan, S.K., Cai, Y., Wang, N., Sou, I.K.: Growth temperature dependence of MBE-grown ZnSe Nanowires. J. Cryst. Growth 301–302, 866–870 (2007)CrossRefGoogle Scholar
  16. 16.
    Wagner, R.S., Ellis, W.C.: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964)CrossRefGoogle Scholar
  17. 17.
    Paiano, P., Prete, P., Lovergine, N., Mancini, A.M.: Size and shape control of GaAs nanowires grown by metalorganic vapor phase epitaxy using tertiarybutylarsine. J. Appl. Phys. 100, 094305 (2006)CrossRefGoogle Scholar
  18. 18.
    Fan, H.J., Werner, P., Zacharias, M.: Semiconductor nanowires: from self-organization to patterned growth. Small 2, 700–717 (2006)CrossRefGoogle Scholar
  19. 19.
    Dick, K.A.: A review of nanowire growth promoted by alloys and non-alloying elements with emphasis on Au-assisted III–V nanowires. Progr. Cryst. Growth Character. Mater. 54, 138–173 (2008)CrossRefGoogle Scholar
  20. 20.
    Chen, C.C., Yeh, C.C., Chen, C.H., Yu, M.Y., Liu, H.L., Wu, J.J., Chen, K.H., Chen, L.C., Peng, J.Y., Chen, Y.F.: Catalytic growth and characterization of gallium nitride nanowires. J. Am. Chem. Soc. 123, 2791–2798 (2001)CrossRefGoogle Scholar
  21. 21.
    Wojtowicz, T., Janik, E., Zaleszczyk, W., Sadowski, J., Karczewski, G., Dluzewski, P., Kret, S., Szuszkiewicz, W., Dynowska, E., Domagala, J., Aleszkiewicz, M., Baczewski, L.T., Petroutchik, A., Presz, A., Pacuski, W., Golnik, A., Kossacki, P., Morhange, J.F., Kirmse, H., Neumann, W., Caliebe, W.: MBE growth and properties of ZnTe- and CdTe-based nanowires. J. Korean Phys. Soc. 53, 3055–3063 (2008)CrossRefGoogle Scholar
  22. 22.
    Ye, Y., Dai, L., Sun, T., You, L.P., Zhu, R., Gao, J.Y., Peng, R.M., Yu, D.P., Qin, G.G.: High-quality CdTe nanowires: synthesis, characterization, and application in photoresponse devices. J. Appl. Phys. 108, 044301 (2010)CrossRefGoogle Scholar
  23. 23.
    Williams, B.L., Halliday, D.P., Mendis, B.G., Durose, K.: Microstructure and point defects in CdTe nanowires for photovoltaic applications. Nanotechnology 24, 135703 (2013)CrossRefGoogle Scholar
  24. 24.
    Di Carlo, V., Prete, P., Dubrovskii, V.G., Berdnikov, Y., Lovergine, N.: CdTe nanowires by Au-catalyzed metalorganic vapor phase epitaxy. Nano Lett. 17, 4075–4082 (2017)Google Scholar
  25. 25.
    Seifert, W., Borgström, M., Deppert, K., Dick, K.A., Johansson, J., Larsson, M.W., Mårtensson, T., Sköld, N., Svensson, C.P.T., Wacaser, B.A., Wallenber, L.R., Samuelson, L.: Growth of one-dimensional nanostructures in MOVPE. J. Cryst. Growth 272, 211–220 (2004)CrossRefGoogle Scholar
  26. 26.
    Ihn, S.-G., Song, J.-I., Kim, T.-W., Leem, D.-S., Lee, T., Lee, S.-G., Koh, E.K., Song, K.: Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates. Nano Lett. 7, 39–44 (2007)CrossRefGoogle Scholar
  27. 27.
    Wolf, D., Lichte, H., Pozzi, G., Prete, P., Lovergine, N.: Electron holographic tomography for mapping the three-dimensional distribution of electrostatic potential in III-V semiconductor nanowires. Appl. Phys. Lett. 98, 264103 (2011)CrossRefGoogle Scholar
  28. 28.
    Sakong, S., Du, Y.A., Kratzer, P.: Atomistic modeling of the Au droplet-GaAs interface for size-selective nanowire growth. Phys. Rev. B 88, 155309 (2013)CrossRefGoogle Scholar
  29. 29.
    Landolt-Börnstein. In: Madelung, O., Van der Osten, W., Rössler, U. (eds.) Semiconductors: Intrinsic Properties of Group IV Elements and III–V, II–VI and I–VII Compounds, III-22. Springer, Berlin (1987)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Virginia Di Carlo
    • 1
  • Fabio Marzo
    • 1
  • Massimo Di Giulio
    • 2
  • Paola Prete
    • 3
  • Nico Lovergine
    • 1
  1. 1.Dipartimento di Ingegneria dell’InnovazioneUniversità del SalentoLecceItaly
  2. 2.Dipartimento di Fisica e Matematica “E. De Giorgi”Università del SalentoLecceItaly
  3. 3.Istituto per la Microelettronica e Microsistemi del CNRLecceItaly

Personalised recommendations